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FOREWORD

This Interim Report describes research performed by The University

of Michigan Radiation Laboratory, 2455 Hayward Street, Ann Arbor, Michigan

48105 under USAF Contract F33615-73-C-1174, Project 7633, "Non-Specular

Radar Cross Section Study. " The research was sponsored by the Electromag-

netic Division, Air Force Avionics Laboratory, and the Technical Monitor was

Dr. Charles H. Kreuger, AFAL/WV(P.

This report covers the time period 15 March through 16 October 1973

and was prepared by E. F. Knott and T. B.A, Senior, Principal Investigators.

The authors take pleasure in acknowledging the assistance of Dr. C. H. Kreuger,

SI who supplied some of the experimental data discussed in Chapter V; Professor

S.R. Laxpati of the University of Illinois (Chicago Circle), who worked with

them during the summer of 1973 and initiated the studies presented in Chapters

II and IV as well as directing the computations of the edge diffraction coefficient;

and Dr. V.V. Liepa, who has been associated with .ill major ,.omputer programs

in the research.

This report has been assigned Radiation Laboratory Report Number

011764-1-T for internal control purposes, and was submitted for sponsor

approval on 2 November 1973.

This Technical Revort has been reviewed and is approved for publication.
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"ABS'ITlACT

The broad objective of this research is to develop techniques to reduce

non-specular scattering from )bjects of interest to the Air Force. The major

tools used thus fvr in the imestigations have been two-dimensional computer

programs which solve the integral equations for a surface impedance boundary

condition and for a thin resistive sheet placed near a conducting obstacle. The

existing, programs have proven valuable, but the research requirements have

now outstripped their capabilities and more inclusive programs are required,

The main thrust of this Interim Report is upon the development of the integral

equations necessary for the construction of more comprehensive programs, but

for the sake of completeness, the equations for the existing programs are also

derived as a matter of course. Of considerable importance is the treatment of

"magnetic" resistive sheets in addition to conventional electric resistive sheets

so that, with but a slight expansion of the concept of resistivity, magneto-dielee-

tric layers of physi,:al materials may be modeled. In addition to the theoretical

work, experimental results obtained by both The University of Michigan Radiation

Laboratory and the Air Force Avionics Laboratory are compared with computed

predictions.
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INTRODUCTION

The objective of the research described in this Interim Report is to develop

"techniques to reduce non-specular scattering from typiral aerospace vehicles of

interest to the Air Force,. Such scattering arises from both smooth and edged

structures when viewed in non-specul.eX directions and during this reporting

j period an ogival cylinder has been used as the basic shape with which to explore

promising techniques. The bas'ic tools in the research were a pair of computer

programs that solve the appropriate integral equations for the surface fields in

two dimensions.

The programs are modified versions of programs furnished by AFAL, the

modificationi being necessary because the originals lacked the flexibility to con-

venien.ly accommodate the shapes of interest in the present study. One of the

programs (RAMD) is itself an outgrowth of an eailier modification which has

now been abandoned (RAM1B) and is based apon the integ-al equations in which

a surface impedance boundary conditicn is imposed. RAMD solves the equations

for either F - c.: H-polarization (incident electric or magnetic vector parallel to

the cylinder axis, respectively) and a brief description of it, along with a source

listing, is given in Apnendix B. The other program "REST) sol',es the integral

equations for a metallic cylinder which may have resistive sheets placed on or

near the surface, but is applicable only for E-polarization, A source listing of

REST may be found in Appendix B of Knott, Liepa and Senior (1973).

The impetus to d&zcard the now defunct RAM1B developed late in the

:sredecessor Contract (F33615-72-C-1439) when it became apparent that the

program would never satisfactorily produce the correct solution for edged

bodies for E-polarization. At the time the Final Report for that Contract was

being prepared, we were stih trying to obtain acceptable values by sampling

the surface densely in the vicinity of the edges. Although the results tended to

converge on what was believed (and has been since demonstrated) to be the correct

• 1
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behavior, the sampling rate over the remainder of the profile had to be reduced.

A summary of these efforts and the consequences of coarse sampling is given in

Chapter V; not unexpectedly, accuracy is reduced and ultimately the gaii i-i

accuracy by dense packing at the edges will be offset by the loss due to sparse

gampling over the rest of the body.

The shortcomings of RAMIB were serious enough to demand a thorough

examination of the integral equations for the impedance boundary 'ordition, and

in Chapter II the equations are derirved using both the scalar and vector approaches.

Because the impedance boundary condition rigidly links the electl*:c surface currents

to the magnetic ones, a pair of integral equations is produced for each polarization

and, from a mathematical viewpoint, one is as good as the other. From a

numerical standpoint, however, one of the pair is markedly superior and al-

though RAMiB used the "good" equation for one polarization, it used the "bad"

one for the other. This discovery led to the construction of program RAMD,

UPI-:hich is sufficiently different from its predecessor to be regarded as a new

program, and not merely a modification.

Program REST has been the basic tool in a study still in progress exploriig

the use of resistive sheets for non-specular scattering reduction, the results of

which will be documented elsewhere. The program is designed only for E-polari-

zation, which turns out to be the case when a simple integral equation is sufficient.

I The H-polarization integral equation, on the other hand, contains a second derivative

singularity (and is thus a "bad" equation) that poses annoying, but surmountable,

numerical problems, and it was probably for this reason that the original version

(RAMC) was 'estricted to E-polarization. Since both polarizations must be

treatable in order to carry out the Contract objectives, we undertook the thco-
retical study of Chapter IV to secure the necessary equations. Unlike the
impedance boundary condition case, theie is no choice; only one equation is

prod ced for each polarization be it simple or not, and it must be used t obtain

Lhe solution. We should mention in passing that the study in Chapter III, which

2



considers impedance boundary condition sheets, has provided a key result for

the analysis and interpretatioL of the data generated by program REST.

As pointed out in Chapter IV, the principle of duality permits us to

immediately write down the equations for a "magnetic" resistance sheet from

the electric sheet equations. Since the magnetic and electric currents are

independent for each kind of sheet, the sheets may be mathematically super-

posed to simulate a thin layer of magneto-dielectric material, and we now have

the foundation for a computer program capable of modeling physicaily realizable

materials in contrast to the more nebulous specificaticn of surface impedances.

The numerical evaluation of second order singularities is an inevitable require-

ment in a generalized program, of course, but the procedures discussed in

Appendix A show that the task can be accomplished with a tolerably small error.

And although the thickness of actual or desirable coatings mnay well prove to be

beyond the bounds of a thin layer approximation, a thick coating can be mathe-

matically modeled by a stack of thin layers.

The need fcr such a generaLzed program may become apparent from the

comparisons between measured and computed results given in Chapter V. The

computations were performed by program RAMD and although they agree well

with experiment for metallic, and in some cases coated, bodies, the agreement

for other coatings is not as good The disparity in these cases is not necessarily

the fault of the program, nor indeed of the experiments, but a consequence of the

difficulty of correctly relating the impedance near an edge to the bulk properties

of a material coating and the local edge geometry. This specification in itself

requires the solution ot a boundary value problem, a task we hope to accomplish

via a generalized computer program based upon the integral equations developed

in this report.

3
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INTEGRAL EQUATIONY' FOR IMPEDANCE SURFACES

It is desirable to examine the form of integral equations appropriate in

a two-dimensional problem involving a scatterer with an impedance boundary

condition imposed at its surface. The objectives of this study are not only to

show how the equations are affected by the geometry and the boundary conditions,

but also to resolve some of the difficulties which have previously been experienced.

2. 1 The Impedance Boundary Condition

Consider a closed cylindrical surface whose generators are parallel to

the z axis of a cylindrical coordinate system and whose profile in a plane perpen-

dicular to the z axis is the closed curve C. Let 'n be a unit vector normal drawn
A

outwards to C and let s be a unit vector in the tangent,al direction, such that
AS AS hne ytm
s, n, z form a right-handed system.

At the surface the impedance boundary condition

E- (n. E) TZ•Z0 •AH (2.1)

is imposed, where 17 is the (normalized) surface impedance and may be a function

of the distance s along C, For a perfectly conducting surface, t7 = 0. By trivial

manipulation, eq. (2, 1) can be expressed alternatively as

Y
H = -- H -n (2.2)

(Senior, 1962), which is the "dual" of (2. 1) under the transformation E ->_,

H-;>-E, Z 0 -• Y0 1 -> 1!n., Of course, this duality is lost if at any p-lint of

the surface Yn is either zero or infinite.

The body is illuminated by a plane wave whosc. direction of propagation is

in a plane perpendicular to the z axis, and it is now sufficient to consider separ-
i Ai

ately the two principal polarizations, that in which H zH (H-polaization),
SE i -- z

and E z F (E-polarization). From symmetry it follows that thc r~tal fields

4



are similarly oriented and this enables us to treat each problem as a scalar one

for the z component of the total magnetic or electric field. Such a simplification

is not possible if the plane wave is at skew incidence.

2.2 Scalar Formulation
I

Let us consider first the case of H-polarization. Then H = z H
z

implying H = 2 Hz, and consonant with the usual definition of the surface electric

current K, viz.

K =n AH (2.,3)

we have

K =K with K =H (2.4)
- s 5 z

On the surface Lhe boundary condition (2. 1) requires

E =--IZ 0 Hz =Z 0 Ks

and since, from Maxwell's equations,

aH-
Z

=-ikYoE
3n Os

we have

aH

_-z = -ikriK on C. (2.5)Sn s

Application of the scalar Green's theorem to a function (,(po) satisfying the

scalar wave equation outside and on the surface gives

Vi + ~ ' i, 1k)-H2.6)((-) H (- k - H L-7 (' dsH

where the normal derivatives are with respect to the primed coordinates of the

integration point, p is the two-dimensional position vector of the observation point

5



A
anu r = p-p implying r = 1,-0_'j. For simplicity we shall henceforth specify

the integration point by its circumferential distance s' along C.

If we identify , with H , eq. (2. 6) becomes
Z

i + L l)H(kr)+ H (1) (kr) K (s')d(ks') (2.7)Hz(p) =H (p)+ 4'.r 1s 0 s

on making use of (2. 5), and if we now allow p to approach a point s on C, the

following integral equation results:

z s p -- > C 4 (sf ) .0) Ks(S)~s)28

The second term in the integrand has a non-integrable singularity when p is on

C, but if this is treated analytically in the usual manner, the limit can be applied

to the integrand to yield

I (s) + Y ry(s')K (s')H l)(kr)d(ks')z 2s 4 s 0
JC

-- K (s')(n'-')H 1)(kr)d(ks') (2.9)4 s •s

where the slash across the integral sign indicates a Cauchy principal value. This

is identical to the equation obtained by Andreasen (1965) for the special case of

incidence in a plane perpendicular to the z axis and %, as quoted (eq. 3. 1) in

the first interim report of the previous =ontract (Knott and Senior, 1973) ., It

is, in fact, the integral equation used for fl-polarization in the original computer

Since the primes now refer to the point of integration, and in view of the present
definition of r, the last terms on the right hand sides of eqs. (3. 1) and (3. 2)
have the wrong signs.

6



program RAM1A, and since the kernel has at most a first derivative singularity,

the equation is well suited to numerical solution.

However, (2. 9) is not the oniy integral equatiorn that can 'e obtained. If,

for example, the normal derivative of the field Hl (p) of eq. (2.7) is taken prior

to the observation point reaching C, we find

YoEis(s) = l(S)Ks) +-lim _L n IC (s')H (1)(kr)

0 3 p -->C 4k Dn 0

ni• .r)H 1)(kr)• K (s')d(ks') . (2.10)

For the first term in the integrand, the differentiation and integration processes

can be interchanged and the non-integrable singularity that results when p is on

C can be treated analytically as before. This is not true of the second term, how-

ever. Hence

YoE i(s) =2(s)K (s) - rj(s')K (s')(" £-)H (kr)d(ks')

lir 1 (

+ C K ( '' r)H P (kr)d(ks') (2. 11)
p--C4k bn\ ss

Jc

which is not so convenient for numerical solution because of the "second

derivative singularity" which it contains.,

We now turn to the case of E-polarization. A particular advantage of the

impedance boundary condition is that it preservei the duality inherent in Maxwell's

I iequations and, in the present instance, this enables us to deduce the integral

equations for E-polarization from those we have already given.

7



As part of the duality transformation, the surface electric current

K n4!H is replaced by the surface magnetic current

K -nAE (2, 12)

From the boundary condition (2. 1), however,

K -rz 0, nAK (2. 13)

and similarly, from (2.2),

Yon/K..K (2.14)

Hence, as regards the componen' KS

K K-.-i -r7 (2.15)s 0•z

where, from (2.3), K = -H is simtply the axial component of the surface elec-
L s

tric current. On applvinr tl'e transýformation

-Hi ->-E H -- K - -rZoK, Y0 -- Z 0 , vj-•i/r

to eqs. 2. 9) and (2, 11), we immediately obtain

y E - ,(s)K K (s')H i(kr)d(ks')

0z 2 z 4 \• Jc

4- rj(s)Kz(S'j(• "))l (kr)d(ks') (2, 16)

-= JC

H (s)() + - K (s'(" 0I11 (1
s 2 z 4 0 z

lim 1 a (S),,A (1)

~-4C~k an s)K (s)n'r)H (kr) d(ks') .(2.17)

p C 4k
€C



Like (2. 9) and (2. 11), these are alternative equations appropriate, in

this case, to E-po!arization. The first is ide-tical to that derived by Andreasen

(1965) for incidence perpenuicular to the z axis, and was quoted by Knott and

Senior (1973a; eq. 3.2). Since the highest singularity of the kernel is a first

Sderivative one, the equation is well 5uited to numerical soiution and is the obvious

one to choose for E-polarization In contras,', Eq. (2. 17) has (in effect) a second

derivative singularity in the kernel aud is much less convenient to use, but in

spite of this it is apparently the equatioin employed in RAM1A. This is not en-

tirely unnatural since the computer )rog:am was orig(ainy developed for skew

incidence, but even in this more general case it is still possible to obtain twc.

coupled integral equations having only first derivative, singularities at the expense

of introducing derivati;_es of the unknown currents. As Andreasen (1965) shows,

these latter derivativee can be eliminated by partial integration, and the resulting

equations then degenerate to (2. 9) and (2. 16) for incidence pe-'pendicular to the
z axis.

The fact that the computer program RAMIA is based on eqs. (2. 9) and

(2. 17) explains our differing experiences in running it for H- and E-polarizations.

It is now obvious how we can overcome the difficulties which formerly bedevilled

us for E-polarization and this matter is taken up in Chapter V.

2.3 Vector Formulation

As we have seen, the problem of a plane wave incident on the cylindrical

structure in a plane perpendicular to its axis can be treated as a scalar one, but

since Hertz vectors are a convenient tool for any scattering problem, it is of

interest to examine the integral equations resulting from this type of vector

formulation.

In terms of the electric and magnetic Hertz vectors TT and 17 , the

scattered field can be written as

E2= VAVj"7 ikZoVA•T,

(2. :8)

Hf V,ý AA

9



The differentiations are with respect to the coordinates of the observation point,

and for a two-dimensional problem

z FU K s (1) .
T!(e) K- ( s -() )H0 (kr)ds' , (2. 19)

sic

- 4k K*(s')H(1)(kr)dst (2.20)

C

where K and K are, respectively, the surface electric and magnetic currents

defined in eqs. (2. 3) and (2. 12). Using (2. 13) and (2. 14) we can express both

7 and T-T (and, hence, the scattered field) in terms of either K or K alone..

In view of the duality relations, it is sufficient to restrict attention to

the case of H-polarization. As before, we then have K SKs with Ks HZ$

im plyirg

7 (1)
(•T(p)_ = -"'-K-(ses 0 (kr)ds' (2.21)

Also, K Z-Kz with K z =7ZoK so that

L: 1p) = "Z (s')k (2022)

4k 0

and it is now a trivial matter to determine the scattered field, In particular,

n() 59+ ) K (s')(fO.) (kr)dlks')

sic
(2.23)

10



on allowing p to apprcach the surface and using 0

H:(p) = K (s)--lH (s) p on CS z

the integral equation (2. 9) is at once obtained. Similarly for the scattered

electric field: if the component Es is evaluated at -a point on the surface, hbe

fact that

E (p) = n(s)Z K (s)- E (s) p on C
s O s S

leads immediately ro the integral equation (2. 11).

Thus, the vector formulation leads to precisely the same integral equations

as the scalar one. For H-polarization, the equation with the first derivative

singularity stems from a consideration of the magnetic field, whilst the electric

field gives rise to the equation having the second derivative singularity. Either

is sufficient to determine the single non-zero component K of the surface elec-

tric current. If, instead, we had considered F.-polarization, the electric field

would hate generated eq. (2. 16) and the magnetic field (2, 17). This is obvious

from duality and here again either equation is sufficient.

2.4 Thin Sheets

The integral equations derived in the previous sections are valid for a

two-dimensional surface at which an impedance boundary condition is imposed,

and provided its boundary profile C encloses a region of non-zero area, either

of the two equations (2. 9) and (2. 11) obtained for H-polarization is sufficient to

specify the surface electric currert K. This is alsc true of the E-polarized

integral equations (2., 16) and (2. 17), and for each polarization, the equation with the

first derivative singularity is the more attractive one for numerical solution.
However, as the thickness ol tae body decreases in comparison with its length,
so does the rate of 3onvergence of a numerical solution, and as the two sides of the

body approach one another, these difficulties become severe. In fact, in the limit

of an infinitesimally thin body, neither type of integral equation is capable of



solution as it stands. This limit is the case of a thin sheet (not necessarily

planar), and as we shall show, both integral equations are now needed to determine

the surface current.

It is again sufficient to restrict our attention to H-polarization. If the

"ýylinder is infinitely thin, the closed contour C can be broken up into two open

cootours C+ and C_ lying on the upper (positive) and lower (negative) sides, and

the integrals expressed as integrals over C+ (say) alone. Thus, for a thin sheet

whose surface impedances are the same on both sides, eq. (2. 7) can be written as

H~(p) H¾+ \\P J2 s( )Hlkrti(s') tJ (st)H 1(kr)~ d(ks) (.4

WC ,C+ (2.24)

where

JI(s ) = K+s(s) +K (s) (2.25)

is the sum of the surface currents on the two sides and

J (s) K (s)-K (s) (2.26)
2 +s -S

is the difference. J (s) and J 2(s) are proportional to the local strengths of the

equivalent magnetic and electric carrent sheets, respectively. We now take the

limits of eq. (2.24) as p approaches the surface successively from above and

below. Addition of the two limits gives

C
,-Hi(s) = 1j ( 1) 'l)(k(2.27)'L# 2 J () (s')J l(S)H0 2.7

F +
which is a simple integral equation for J (s). Subtraction, on the other hand,

yields

S lir lim \ (S (2.)2(kr)d(ks8)

+ .C

: +

12



and by analyt,-al examination of these limits ic can be shown that (2. 28) is merely

the identity J2 (s) = J 2 (s). Unless J 2 (s) =_ 0 (and this is not in general true even

for a uniform planar sheet), the integral equation (2, 9) has now served to deter-

mine only the sum of the surface currents.

To find J (s) and, hence, the currents themselves, it is necessary to use

the integral equation (2. 11) in addition to (2. 9). Paralleling the analysis leading

up to (2. 1 1), the normal derivative of (2. 24) is taken as the observation point

approaches the sheet from above and below, Subtraction of the two limits again

yields an identity, this time for J (s), but addition produces the following integral

equation for J 2(s):

Y E 1 lim 1 3 AIA H 1 ~ ~ ~ t
Y E i lim I J2(s')(n•. A )H (1) (kr)d (ks') (.29

0o+s(s) = 2n(s)J 2 (s) + C 4k an +_,2.
P_ ++ c+

This is analogous to (2. 11) in having a second derivative singularity.

For a thin sheet it is therefore necessary to employ both types of integral

equation developed in Sections 2. 2 and 2. 3 and for H-polarizatior. the appro-

priate equations are most conveniently expressed in the forms (2. 27) and (2. 29).

The equations for E-polarization are similar and can be obtained using duality.

Thus, from (2. 27) we have

C',
I 1 '• 1 :'s) (1)

-E (s) 1 J (s)+- )H (kr)d(ds') (2.30)z 1 4 J rl(s') 1 0

where

J(s) (E+ E) ri(s)Z (H- H1 z ~ 0 +s -s

On writing

1(s) -•(s)Z0 J3(s) (2.31)

13
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eq. (2. 30) becomes

Y E n(s)i 1(s)+ J 3 (s')H1)(kr)d(ks') (2.32)

which is an integral equation for the strength of the equivalent electric current

sheet. Similarly, from eq. (2.29),

iilim lI Il ) (1)(I d k '

Z H (s) (s) 1 14 C (1)ýn
H+s- 21(s) 4 _ 4k + + J 4 (s')(•. •)H (kr)d(ks')

JC+ (2.33)

where

j (s) (E -E) -J s) (2.34)
4 z z 2

is the strength of the equivalent magnetir current sheet. Equations (2. 32) and

(2. 34) are the required integral equations for E-polarization.

A special instance of a thin sheet is a planar strip (or ribbon), and for

this geometry it is of interest to pursue our study of E-polarization a little further,

R' If the strip occupies the portion 0 , x K L of the plane y = 0, where x, y, z are

Cartesian coordinates, and is illuminated by a plane wave having

i A -ik(x cosa +y sina)
Se , (2. 5)

k eq. (2. 32) becomes

L

Y e- c W 21x)J(x)+ i 0J3 (x')H l)(k Ix -xu)d(kx') (2.36)

while (2. 33) reduces to

1
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L-sin cosk a 1s) I lim I a !

-snr .. 2- J (x')
-- 277x 4 0- 2 ay 4

4k A

j H (kOx-xl9+y d (kx.
ay 0

(2.37)

For a plane wave at grazing incidence, svi, q - 0, and eq. (2. 37) gives J4(x) = 0.,
•+

We are now left with the siigle equation (2. J16) to solve, and since E = Ez, its
Z

solution specifies the surface fields on the strip. In this case the impedance strip

is equivalent to a resistive one (see Chapter IV).

If L = ao and Y7 = constant, the strip is a uniform "metallic" half plane.

The integral equations (2. 36) and (2. 37) ar e then identical to cqs. (11) and (12)

of Senior (1952) and can be solved analytically using the Wienet--Hopf technique.

From the resulting expression for the scattered field, thc edge diffraction co-

efficient can be determined. This is shown in the next Chapter.
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in

EDGE DIFFRACTION ,Y AN IMPEDANCF HALF PLANT

The diffraction of a plane waie by a half plane at which an impedance

boundary condition is imposed has been soivect for both normal and oblique (.. z)

incidence (Senior, 1952, 1960), and even for the general problem of an impedance

wedge of arbitrary included angle, solutions are available (Senior, 1959;

Maliuzhinets, 1960; Lebedev and Skal'skaya, 1963) for normal incidence. Never-

theless, computed data showing the effect of the impedance on the scattering are

very scarce. Senior (1952) Dresented some patterns for a specific complex value

of 71 and Maliuzhinets (1960) has reported that one of the key functions involved

in the solutions has been tabulated, but no reference is given.

The analytical solutions can be used to find the diffraction coefficients

associated with the edge. Maliuzhinets t expressions are particularly convenient

for this purpose, and from the resulting coefficients for an impedance half plane,

Bowman (1967) obtained a high frequency approximation to the backscattered field

of an absorbing strip at normal incidence. The predicted values are in good

agreement with measured data.

V f the half plane is illuminated by an E- or H-polarized plane wave of unit

amplitude incident at an angle a in a plane perpendicular to the edge, the cor-

responding diffracted field at large distances from the edge and viewed in a direc-

tion e away from either of the optical boundaries is

1--2'- i(kp - •

7Tkp e P(a, 0)

where (Maliuzhinets, 1960)

Si sin "(27T-0)
: 4 0)i- + (3.1)4 sin + Cos7 sin- - co

? 2 2 2



with

i~(3) (gir~)~(j3+7r-X)(, (J-7t+xh.( (3-7t-x) ,(3.2)

13 Q nsinv-2F-iTsiny +2v

3xp( 7)1xi v \ dv (3.3)S, = 8xp Cos V

The angle x is .uch thx Jo

1/,j for E-polarization
cc;x (3.4)

I for H-polarization

Many properties and altert itive definitions of the function (3) are listed by

Bowman (1967) in the Appet lix to his paper.

The edge diffraction -oefficient P(a, 0) is a function of tae angle of

incidence a, and the case of edge-on incidence (a = r) is of particular interest

to us. We first consider baci 3cattering, 0 = a 7r, and then examine the

more general case of bistatic cattering.

3. 1 Backscattering for Edge-ox Incidence

From eq. (3.1) with 0 =a = 7r, we have

o k ()5)

since ¢,(n) is an even function. As shown by Bowman (1967),

1 so t(h/2i3t
1'(2 7 + Xs- -X TO Tsin
7t 2{ +X)j2(. 4 2

so that
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.- cosx 2I(/2}

and since

(r(O) = (7rx)( '2

it follows that

-. ( T 7r(, I / X)8

But

L> (7+)(, (7T-X) = Cos + CosWT( 2 (x)4 2)

and hence

W 8
P~r~r)= i 4cosy 7 T/(o) )-1 -•+ )4' (3.6)

Bowman has derived two alternative forms for (3). From the first of

these,

-1/8~x 1/c2V 1 v dv
V iT (i/2) osx KF2cos 2 Jexp cov-

(7TI. 2) 2ro+ 47,r Cos, v_ I

giving

But
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P(7T, = 1 exp t2, vdv (3.8)7r Co'v 9

whereas from the second

7(x W -I/2( X1/2 1 _C7 __2_7

7 2 8 osin v-2v
,(7/2) -2 + F2o cos v

X (3.9)

giving

P (7_ 71 x 7r cos u - (?T- 2u)
P(,•) = 1- rcoss-(exp2- du . (3.10)

4r sin u

Equations (3. 8) and (3. 10) can be used to obtain analytical approximations

to P(7Tr,7) for small and large It 1.. For this purpose, consider E-polarization for

which cosy X 1/)Y. If rl << 1,

I I, e-iX
77 2

implying

X -i log " (3.11)

ewise

v • 2veiv
Cos v

and therefore

•o } ~ ~vdv (1-ixiX • 1l-lg2

"from which we obtain

19



P(, 7T)- - exp -log (3.12)

When 17 0, eq. (3. 12) gives

P (7,,7) = - (3.13)

in agreememt with the known result for a perfectly conducting half plane. If, on the

iI other hand, 1r) 1>> 1. we have

j, • _ 1 (3.14)

and

7/2 -X 7rcosu-(Tr-2u) 
2

sinu u7

so that

P(n',7r) -- exp 7- (3.15)

To see how successful the approximations (3.12) and (3. 15) are in covering

the entire range 0 , cox, P(r, 7r) has been computed for real t7 by direct

numerical evaluation of one of its integral expressions. Since! ;oU
d -= -2K

cos v

where i, = 0. 9159656. • • is Catalan's constant (Bowman, 1967), eq. (3 8) can be

written as

i 2 vdv - (3.16)P 7r, 7r) =- exp 2o K)(.6
2 7T Cos v2

0
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This integral was evaluated using a 32 point Gauss quadrature formula and

Fig. 3-1 shows a plot of the normalized diffraction coefficient
P (7, 7T)

P(,,,7) =)(3.17)
P(l=

for real n, where P(7, -,) is given in eq. (3. 13). Results computed using
' =0

the approximate formulae are included for comparison and it will be observed that

(3. 12) and (3. 15) cover the entire range of I j with surprising accuracy: even for

It = 1 the large and small impedance approximations differ by only 20 percent and

are individually in error by no more than about 10 percent. Equations (3. 12' and

(3. 15) are therefore adequate for all practical purposes and these are, of course,

not restricted to real values of 17.

The corresponding resuit-• for H-polarization follow on replacing YJ by 1/7.

3. 2 Bistatic Scattering for Edge-on Incidence

The analysis in this more general case is not dissimilar to the one we have

already carried out, although the expressions obtained are more complicated.

From eq. (3. 1) with a = 7r, the bistatic diffraction coefficient is

0

P(r,O) 1 cosec •" (-O)+2r-) (3.18)

which can be written as

P T 0 i cos ( (3.19)
•_• •P(r, 0) = - cosec 2 cos__sn0 ¢(0

2 2 ccis-x+sinO ((0) (.9

on using the relations (A. 14) and (A. 15) of Bowman (1967). Using relation (A. 13)

of the same reference, it can be shown that

cos +Cos (4 . 7T 9(-2r+X2 r(0-7T-Y)~(0) - 2 ~U-ryW -Ty

Cos I o + Cos- ) -

cos co + cos ) , k 4 7 7
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and hence

P(osr + ) 2 + C + c cos + cos - 6)
P i (7r, r) se2 Co o Z_A5 CsI•o (' r(W) 7r()

(3.20)

where, for brevity, we have written 6 = 7r-0., As evident from this expression, the

it bistatic diffraction coefficient is an even function of 6.

From the integral form (3.9),

rlX-6) 'cos )(-6 +cos 12 X 6 sinv2v
7T 2 4 exp r csi N-2v d

( 0 Cos +cos / Cos v
2 4

and since

"X-6 ý+ ) lrsinv- 2 v dv = 2 7rsin2u-4(XssinXsinu+ucosxcosu) du

cos v cos 2X +cos 2uX ýX 0
substitution into eq. (3. 20) gives

(6
P(TI Žr-6) secr sin 2u - 4(sin X sin u +u cos cos u)dP -rr = see - du •

P(TI)2 e 2 cos 2X +cos 2u
0

(3.21)

The exponent is a finite range, real-variable integral which converges for all x and

=: 1 6, and can be evaluated numerically. The right hand side of eq. (3.21) is unity for

6 = 0, as required, but tends to infinity as 6 --*r regardless of X. This is the

forward scatter case in which the direction of observation coincides with the reflected

wave and shadow boundaries, and the infinity is attributable to this fact.
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Equation (3. 21) can be used to obtain analytical approximations to

P(r, 7r- 6) for small and large Ijr, If In7 I<< 1, y is given approximately by (3. 11)

and

P(7Tr,r) 2 exp c i e Cosu)du

<Do0

sec exp -!1-(lcos 6) log!/-

Hence, from (3. 12),

P(Tr, T-) -6 -see exp [2 - (1 +cos 6) log .(3.22)
2 2 1 7 2 -J3.22)

Not surprisingly, this is consistent with eq. (3. 12) when 6 = 0, and it also reduces

to the known bistatic diffraction coefficient for a perfectly conducting half plane

when n) = 0. F(r real r7, P(-r, ,r - 6) increases monotonically as 6 increases from
0 to 7T.

If n J»>> 1, x can be approximated by the value given in eq. (3. 14), but
in order to arrive at an expression for the diffraction coefficient it is necessary

that

6

With this restriction,

P(T, ?T-5) 6 2 fucosusn\• iP~ -sec F exp uan 2+-•ucossin duu
P (7T 7T-) 2 2\ t \ *2 u

0 sin u

: =sec "' exp )
2ut exp -k----

and on inserting the expression for P(7-, 7r) given in eq. (3. 15), we have

24



1~ MM 1 1- 6T

- se7- exp P - + ei) (3.24)40r, 2-a 771 sin 2

This is in agreement with eq. (3.15) when 6 0 and, consistent with (3.23),

remains small as 6 increases.

The small and large impedance approximations (3. 22) and (3. 24) both

indicate that P(r, 7r-6) changes rather slowly as 6 increases from zero, and this

has been confirmed by a numerical determination of P(?r, r.- 6) using an exact

integral expression analogous to that in eq. (3. 21).
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IV

INTEGRAL EQUATIONS FOR THIN SHEETS

One of the main advantages of the impedance boundary condition is its

ability to simulate a variety of surface materials and/or imperfections and to do

so in terms of a single parameter only. Unfortunately this generality is also a

Sweakness, and having used the integral equations or some other theoretical

Iapproach to arrive at a desirable specification of the surface impedance, it is

Sby no means evident how (or even if) this impedance can be realized in practice.

To avoid the difficulty, it is natural to seek a formulation in which the

properties of any surface or coating are included explicitly, both geometrically and

electrically. Such a formulation has been considered by Oshiro e' al. (1971), who

developed the integral equations for the problem of an E-polarized plane wave in-

cident on a metallic cylinder fully or partially clad with a dielectric layer. The

geometry and permittivity of the layer are arbitrary, but its permeability is

assumed to be that of free space.. Since the field scattered by the layer is

expressed as a surface integral of the polarization currents, the resulting

integral equations are difficult to solve in general, but are amenable to solution

in the limiting case of an infinitesimally thin layer. The computer program based

on this formulation is designated REST and has proved very helpful in our studies.

Although the problem of a plane wave incident on a resistive sheet in

isolation, i. e., without the scatterer present, is "of little practical interest in

itself, it is instructive to compare it with the problem analyzed in Section 2.4.

For this purpose, attention is confined to E-polarization, for which program REST

is applicable.

4. 1 Electrically Resistive Sheets

Consider a thin sheet of highly conducting material whose permeability

M is that of free space. If a( is the conductivity and .is the thickness, we can

define a surface resistivity R as
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tA

S-(ohms) (4.1)

& W-OXe• (

where Xe is the electric susceptibility and E is the permittivity of free space,

and as A----O we can imagine cr to be increased in such a manner that R is

finite and non-zero in the limit, The result is an idealized (infinitesimally thin)

electric resistive sheet whose electromagnetic properties are specified by the

single measurable quantity R.

Mathematically at least, the sheet is simply an electric current sheet

whose strength is related to the tangential electric field via the resistivity. Since

P =0 , there is no magnetic current present and

4 A + -

n +(E -E =)0 (4.2)

where the affices I refer to the upper (positive) and lower (negative) sides of the

sheet and A = is the outward normal to the upper surface. If J is the total

electric current flowing in the sheet, i. e., its strength,

A + -

n A(H+-H) =J (4.3)

and from the definition of the surface resistivity,

+
A (S•h (n~AE ) = -R-. (4.4)

i With R specified (it may be a function of position on the sheet), eqs. (4. 2) through

(4. 4) constitute the boundary conditions at the surface.

The field occurring in each of the above equations is the total (incident plus

scattered) field, and since H H when J 0, eq, (4. 3) implies for a planar sheet

at least, + .+ o
A 

+nAH = -+ ' A!!

Hence, frorr t,4. 4), the surface cur rent density on the upper surface is

+ A A

K n^ n • (4.5)
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and if a surface impedance ) is attributable to the shieet, eq (4. 5) suggests that

2Y R (4.6)
0

Nevertheless, the problems of a resistive sheet and a sheet at which an

impedance boundary condition is enforced are different from one another and, in

general, not equivalent. Although there is some similarity between the conditions

imposed, an impedance boundary condition specifies a connection between the

tangential components of E and H on each side of the sheet and forces a mag-

netic current to occur in addition to an electric one. The sheet is therefore a

combined electric and magnetic current sheet with the two strengths related via

the impedance. In contrast, a resistive sheet supports no magnetic current by

virtue of eq. (4. 2). Because of this the two problems are basically distinct,

and unless the geometry is such that no magnetic current is excited on the

impedance boundary condition sheet, it is not possible to relate R and rj.

To obtain the integral equations appropriate to a resistive sheet, we

consider first the case of E-polarization. If E = E then J = •J and the

boundary condition (4.4) becomes

+
E = RJ (4.7)

z z

where R is the surface resistivity, assumed known. It is a trivial matter to

derive an integral equation for the strength J of the equivalent electric current
z

sheet, and the vector formulation is (perhaps) even more straightforward than the

scalar one. From the definitions (2, 19) and (2. 29) of the electric and magnetic

Hertz vectors describing the scattered aield, we have

Tr (•) =0 (f. 8)

on using (4.2) . Also

:Z0 A (1)
: -- [(p= - 4k Sz (s)n r)ds' (4.9)
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where the integration is along the sheet (or on one side only), and hence, from
(2. 18),

E z() E' (p) - -0 Jz(s)HI) (kr)d(ks'). (4.10)

C

If p is now chosen to lie on the sheet, application of the boundary condition (4. 7)

gives

Y Ei (s) = Y R(S)J (s) + J ( ')H-(1)(
0 • Jz(s")0 (kr)d(ks') , (4. 14)

which is a rather simple integration equation for the total current J (s). Note
z

that consideration of the magnetic field would have produced only an identity for

J (s). Alternatively, the scalar formulation can be used starting with eq. (2. 6)
z

and taking u to be the z component of the scattered electric field. The resulting

integral equation is identical to (4. 11).

From eq. (2.31),

J (s) =-(H +s-H ) J 3 (s) (4.12)

where J 3(s) is the total current satisfying the integral equation (2. 32). -om-

parison of (4. 11) and (2. 32) shows them to be identical if R and rl are related

through eq. (4. 6) , With this identification, the electric currents are the same

for resistive and impedance boundary condition sheets, but since the latter sheet

can also support a magnetic current, the scattered fields will differ in the two

cases unless the magnetic current is not excited. A situation where this occurs

was noted in Section 2.4 and hence, for a planar sheet at edge-on incidence,

a resistive sheet is entirely equivalent to an impedance boundary condition sheet

whose surface impedance is given by eq. (4. 6).
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This conclusion is important in enabling us to use the analytical information

available about th(e impedance boundar.? condition sheet in studying the properties

of resistive sheets, From the exact analytical solution for a constant impedance

half plane, the edge diffraction coefficent can be obtained as shown in the previous

chapter. For the poi:icular case of edge-on incidence, this coefficient is also

applicable to a resistive sleet for all angles of diffraction provided r = 2Y R

where R is the sutILice resistivity in a neighborhood of the edge.

Turning now to H-polarization for which_ z H , the strength of the
z

resulting current sneet is J = S'J and the boundary condition (4.4) yields

E RJ • (4.13)
S s

For the field scattered by the sheet the magnetic Hertz vector fl(p) is again zero,

and since

01 S' (kr)ds' , (4.14)TT:)- i-.\ s'Js'~

simplies

ES _-E +R Js S s

and hence

Y E (s) =Y R(s)J (s) l + J (s .)H (kr)d(ks') (1.15)
0 s 0 SJ p-->C C4k an , I

This is an integral equation from which to determine J (s). Unfortunatelv, it isS

characterized by the same type of second derivative singdarity that we have met

oefore and which is difficult to handle numerically, but to spite of this, eq. (4. 15)

is the one that must be solved. Indeed, tae consideration of the magnetic field

scattered by the sheet produces only an identity for J (s&.
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Even for a resistive sheet we are now faced with two integral equations

analogous to the ones obtained for an impedance boundary condition sheet, but

whereas the latter requires both equations to find the two currents that either an

E- or H-polarized wave excites, the resistive sheen needs only a single equation

for each polarization. Though one is convenient for iumerical solution, the other

(for H-polarization) is not. Were we to compare eq. (4.15) with the analogous

equation for an impedance boundary condition sheet, we would again find them to

be identical if ri = 2YoR.

4. 2 Generalized Resistive Sheets

Our attention thus far has been concerned with the concept of an electric

resistive sheet whose electromagnetic properties are specified entirely by the

surface (electric) resistivity R, but we can also conceive of the electromagnetic

dual of such a sheet. This could be simulated using a material having 0

and high magnetic loss, and we could then define a surface "magnetic resistivity"

R= (mhos) (4.16)

analogously to eq. (4. 1) , where Xm is the magnetic susceptibility, P0 is the

Ii permeability of free space and A is the thickness of the layer. If Xm --- ;-o (or,

mm
more realistically, q1mxm ) as 0-~ in such a way that the product remains

finite, we are then left with an idealized (infinitesimally thin) magnetic resistive

sheet whose properties are completely specified by the single measurable quantity

R.

For a magnetic resistive sheet, the boundary conditions are simply the

dual of those in the previous section and are

n H.-n--) =0 (4.17)

nA(E- _E-) = -J" (4.18)

nA(nAH-) = -R J (4.19)
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where the affices + again refer to the upper (positive) and lower (negative) sides

of the sheet and, say, n = . The sheet supporLs only a magnetic current J

and, as a result, the tangential components of the magnetic field are continuous

across it.

Integral equations from which to compute J are immediately

obtainable from those in Section 4. 1 by invoking duality. Thus, for H-polari-

zation, H =H z and J = zJ . Hence, from eq. (4. 11),

Z H (s) = Z R (S)(s)+ Jz ')H ., (4.20)
0 z 0 z 4 )Cz 0

I A i A
Similarly, for E-polarization, E z , JE = sJS and, from (4.15),

Sz -- S

(s) Z R lim 1 (1)
Z0H Hs = Z0R(S)'J %s)+ - W J (s)(f' r)H (kr)d(ks').Os s p--•C 4k 1n

(4.21)

These are analogous to the equations for the magnetic current supported by an

impedance boundary condition sheet having surface impedance

Y 0 Y/(2R ),(4.22)

though we remark that the problems of impedance boundary condition and mag-

netic resistive sheets are completely equivalent only in those cases where an

impedance boundary condition sheet supports a single-component current alone..

One such situation is a planar sheet at edge-on incidence.

SIs now logical to consider a generalized resistive sheet consisting of

a superposition of an electric and a magnetic resistive one., With such a sheet,

the electric and magnetic currents are produced by the electric and magnetic

susceptibilities of the material respectiveiy, and are specified by R and R

independently of one another. From eqs. (4.2) through (4.4) and (4. 17)

through (4. 19), the electromagnetic boundary conditions at a generalized resis-

tive sheet are
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nA(H -H) =J (4.23)+1 E +- :
n^(_ E-) =-J (4.24)

A A L+ E -5-RJ (4.26)

nAinA(H +H-)j =-A1(.6

where the last two have been deduced from (4. 4) and (4, 19) by writing these as

conditions on the sum fields. This avoids the cross-coupling occurring at each

side of the sheet.

The Hertz vectors describing the scattered fields are

SJs (1) (kr)ds' (4.27)

LT(k J-(s 4)H 0 (kr)dsH (4.28)

from which Ev(ao and H (p_) can be computed using the eqs., (2.18)., By taking

the observation point to lie on the sheet and imposing the boundary conditions

S(4. 15) and (4.16), we then obtain integral equations from which J and _J* can

be computed. Though it is natural to expect that the equations will be coupled,

this is not in fact the case.

We shall again confii.a attention to the principal polarizations and it is

actually sufficient to conside: E-polarization only. If E z Ei, then J = ^Z J
z - Z

and J = sJ . From the eqs. (2. 18), the fields scattered by the sheet are
s S

HS(8) 0 n (st(n"')H llH(kr)d(kS')
s 4 k cin s1C

i (1)
J (s')(n\ r)H (kr)d(kst ) (4.29)z
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E 0 Jz(s) H )(kr)dks?)

[Q

SO I (n(")(A f,,H(l)(kr)d(ks) (4.30)f4 s 1

I• It the observation point p 's now chosen to lie successively on the upper and

lower surfaces of the sheet, the resulting Lelds can be Inserted into The boundary

conditions

H +H = 2R j

,•=-: N'4. 31)

r+ E• -E =E =2RJ

Since the contributions of the second integrals in (4. 29) and (4. 30) cancel, we

are left with

,, Z (s) = Z0 : (s)+ Jim 1 ac s(s(•''1A)H

0 O 0 s p C 4k an_ __ I k~dk
i C

~J~s9H0 (4.32)

(s) Y R (s) s)+1 (kr)d(ks') (4.33)

0~ z
0

which are two uncoupled integral equat ions foL" J and J.1 Theyare identical
S Z

to the equations (. 21) and (4. 11) lor individual magnetic and electric resistive

sheets, and the scattered fields (4. 291 and (4. 30) are simply the sums of the fields

scattered by the separate sheets., Though a generalizeo resistive sheet does bedr

some resemblance to an impedance boundary condition sheet, it should be noted

that in the present case J and J_ are specified independentjy by it and W"'

respectively. the constraint (2. 13) or (2. 14) which char.tcterizes an impedance

boundary condition surface would only exist if R 1/(4R ).
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An important practical consequence of the above results is that for a

generalized resistive sheet it is sufficien, to solve only the two integral equations

(4. 11) and (4. 15) for an electric resistive sheet with E- and H-polarizations,

respectively, The analogous equations, (4. 21) and (4. 22), tor a magnetic

resistive sheet follow by invoking duality; and for a generalized resistive sheet,

tne integral equations are the same as for a superposition of the two sheets, as

are the scattered fields. Of course, we are still faced with the numerical diffi-

culty posed by the second derivative singularity in eq, (4. 15), but before turning

t this, it is of interest to consider the problem of a generalized resistive sheet

in the presence of a body.

4.3 Sheets and Bodies

A resistive sheet is of concern to us because of its potential for reducing

the scattering from a body in its vicinity. Until now our studies have been

confined to an isolated sheet, and though these have served to pinpoint the types

of integral equation which are appropriate, the practically important problem

is that of a sheet in the presence of a body. This is the problem that we now

address and, as we shall see, the analysis is a rather trivial extension of that

which has been done before

Consider a body whose profile is the (closed) contour C2 and which has

the impedance boundary condition (2. 1) or (2. 2) imposed at its surface. Some-

where in the vicinity of the body there is a generalized resistive sheet whose

profile is the open contour C1 and which is subject to the boundary conditions

(4. 23) through (4. 26). A plane electromagnetic wave is inciJent and it is suffi-

cient to assume this to be E-polarized, i. e., = Z E . Hence, E = Z E and

H Fl +YH y and from the eqs. (4.23) through (4.26),Hj = xAx

wherJ , n*r=te', (4.34)
-- Z -- S

where J and J are the electric and magnetic currents, respectively, of the

equivalent current sheet. The Hertz vectors describing the field scattered by

the sheet are therefore
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rT (1)(- A 0•Z C•)k0)s

_ -T Jz (s')H 0 (kr )ds' (4.35)

1

(Y P) 0 '"I (sI)H(1)k I)ds, (4. 36)

OC

where .1.=p-. , i = Ior2.

The body supports surface currents K and K where (see eq's. 2, 3 and

2.12)

K =zK , K=SK . (4.37)SZ z S

Since K =-iZ K by virtue of the boundary condition, the Hertz vectors

describing the field scattered by the body are

7rT (p) -Z 0 I Kz(s )H l)(kr)ds' (4.38)
-z4k 0 k~)h¶r 0 2

C2

() ^'y•(s)Kz (Sr)II(01)(kr 0 )ds' (4.39)
T_(2) (p) = 4k 02

C 2

The complete scattered field is given by aie eqs. (2. 18) with

T7 =1 T-(: 2) T+T•)

and at an arbitrary point p in space
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YiE(P) Y0 E()4 J- s' (s')H 1 (kr0 1 )d(ks)

1~GiYi

(sI)H(01)(kr 0)d(ks)

4 z 02 1 02

11 (2

+ - tJ(si)(n-ro)H (kr )d (ks)

4 3 ~ t)" 01 1 01

i ~ +__i Kz(s,)H~l)(kr0)dOks,)

C
C2

S-(S+K (s) (n' J (r])H (4.41)

F ic2

We observe that there are three unknown components of the currents, two for the

sheet and one on the body, and three integral equations are therefore necessary

to determine them.

Let O approach a point s1 on the sheet successively from above and

below. From the soecond of the eqs. (4. :31) and the fact that
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m + tJ,(s(n P )H(kr )d(ks?) 0, (4.42)
\- c 1+ £-C CI-) s 01 1 01

I

we have

YoEz (s ) Y R(s )J (S )+ J" Jz (S)H(1)(krll)d(ks')
0 0 1lz 1 4 z 0 1

,C1

1 C (1)+ 14 I K (s)H (kr 1 2 )d(ks')

4 z 0 1c2

_ S)(, A (1)4 C (nr12)H (kr 12)d(ks')

where rij = p-i-j ij 1 or 2. Similarly, by considering the magnetic field

component 's H and using the first of the eqs. (4. 31),

• ,:: ,',: lim YO b ': ^ " l)kr
1-1

H (S R(s )J (s -+ - J (K)(s). )H (kr d(ks')
s 11 s 1 P 14k an1  s 01 1 01

i A (1)

1 A n

ao . a2 (4.44)

Equations (4.43) and (4.44) are necessary fLr the determination of J and J* •

The first integral on the right hand side of (4. 44) has a second derivative singu-

larity of the type referred to earlier. The last integral is similar in form, but

the integrand is actually free of singularities if C and C2 have no point in
1 2

common, and the differentiation can be carried out explicitly.,
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The third (and last) of the integral equations required is obtained by

allowing p to approach a point s 2 on the body, However, there are two forms

that this equation can take. If we consider E and use the fact that E = 0 Z0 Kzzz

on C we find

Y Ei ( T~s K ( )+! 1 Kz(S')H (1) (kr22)d(ks')
Yo zS2) 2 2 zs2)Kz(S2)24

2C2- I~ I ^-, (1)

Y4 +(s')K (s')(nH 0"r2 i ()kr2)d ks')04 zz2 22'z5 2 41 22

C 2

+ 1 J z (s')HK0 (kr 21)dks')

.1
jy0 A (1).

+- J• (s')(if'. r1 )H (kr 21M(ks) . (4.45)
4 s21 1 21

C1

Alternatively, from the magnetic field component s2H,

;" + _i 2 , ^1)(kr 2 2 )d(ks,)

li + 1 (1) A (1

H4 (S2) Sz(s2 K z(s )(n" r22)H (kr )d(ks

22

_P_--ýli P2 4kl an2• TI(s')K z(s'1)(n"1 r02)HMlI)(kr 02 )d(ks')

S~C
i2

SS ) A )H (kr d(ks') (4.46)

i•:'•.,_4 z 2 2 1 1 ( ' , . 2 1)H k 2

•-: C 1
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This last equation is similar to (4. 44) and the same comments apply. If

J (s') = 0 = J"(s9), i.e., if there is no resistive sheet present, eqs. (4.45) and
z s

(4.46) reduce to (2. 16) and (2. 17), as required.

For the complete problem of a generalized resistive sheet in the presence

of a body, the integral equations needed are, (4. 43), (4.44) and one of (4.45), (4.46).

Because of its greater simplicity, (4.45) is the natural one to choose. If the sheet

has only an electrical resistivity, so that R is infinite, implying J" = 0, and if,

in addition, the body is perfectly conducting (rl = 0), eqs. (4.43) and (4. 45) become

•1 1)YoE iz(sl = YR (sl)Jz(s) 4 J(SI)M, (krllWdks')

C

K (s')H(l)(kr )d(ks,) (4.47)
4 z 0 12

Y E (s) J J(st)H ()(kr )d(kst) +L ý K (s?) () (ir)dk)
0 z2 4 zH0 21r4 2 )dZks'1

CC

1 C2 (4.48)

and these are the ones used in program REST. However, one of the great

advantages of the impedance boundary condition is its preservation of duality,

which allows us to deduce the results for H-polarization by applying the follow-

ing transformation to the E-polarized equations:

Ei • Hi Hi --- 4 -E* -- • -%-

i i H iz z s s Z z s s

K K =iZOK R- , <--- i/ , YO -'Z 0 .

It is therefore sufficient to consider only the three integral equations (4. 43),

(4.44) and (4.45). Apart from some slight simplifications, these are identical to

the equations obtained by Laxpati (1973) using a scalar formulation, and are now
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being programmed for numerical solution., Of the three equations, (4. 43) and

(4.46) are similar in form and rather easy to treat. Indeed, they are not sig-

nificantly different from those which are employed in programs REST and RAMiD

(see Chapter V). Unfortunately, eq. (4.44) is rather difficult to handle because

of the "second derivative singularity" which it contains, and an examination of

this type of singularity is given in Appendix A.

4
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COMPUTED AND EXPERIMENTAL RESULTS

In the process of assembling material for this Interim Report, we found

that a great deal of information had been collected since the publication of the

previous report (Knott, Liepa and Senior, 1973). The theoretical aspects of a

detailed examination of the integral equation formulation have already been

presented in Chapters II through P ',ut some of the information we had acquired

seemed to fit in neither category. .Ve therefore set aside Chapter V as a reposi-

tory for otherwise unclassifiable topics.

Before presenting the details of these assorted smaller studies, we

first review the salient events of the predecessor Contract, and of the present

Contract until now, in Section 5. 1. The intention is to provide a commentary

that bridges the transition between the two and to show why some of the computer

programs had to be modified. The review will refresh the memory of the reader

who has seen the last report, but will also acquaint the new reader with previous

accomplishments. The capability of the impedance boundary condition computer

program is assessed in Section 5.2 via comparisons with measured results, and

the effect of treating both the leading and trailing edges of an ogival cylinder are

discussed in Section 5. 3. The effect of sampling rate is taken up in Section 5. 4,

along with the demonstration that, at least for edge-on incidence, it is the lead-

ing edge of the obstacle that dominates the scattering for E-polarized incidence.

5. 1 Summary of Previous Efforts

Early in the predecessor Contract we were furnished a computer program

(RAMIA) by AFAL, based upon the linearized solutions of integral equations (2.9)

and (2. 17) derived in Chapter II. RAM1A offered but two options, the solution for

a circular cylinder satisfying a (constant) surface impedance boundaiy condition

or the solution for a cylinder of arbitrary shape, but whose profile ,,ad to be
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specified point-by-point as input data. Since the investigation was to be directed

toward non-specular scattering, circular cylinders were oi little interest and

the feeding of more general profiles into the machine point-by-point was clearly

an undesirable task. Moreover, previous experience had shown that the impedance

must be variable along the surface in order to permit some measure of control
over the far field scattering.

Since our task required more flexibility than was offered by RAMlA, we

modified it so as to more fully satisfy the existing needs. The profile-generating

subroutine was expanded and it now constructs the body perimeter from a collection

of abutting straight line or circular arc segments and assigns variable surface

impedances along the profile according to two general mathematical descriptions.

A subroutine was also added to the program that prints out "quick-look" plots of

the induced surface currents. To distinguish the program from the original it

was called RAM1B.

RAM1B was immediately tested for both E- and H-polarizations using a

Sconducting circular cylinder as a test obstacle. The results of these initial

test runs duplicated those of the original program, and they also agretA quite

well with the exact solution obtained by the method of separation of variables

in circular cylindrical coordinates. Satisfied with the capability of RAM1B,

we subsequently used it intensively to study methods of reducing traveling waveI: returns from the trailing edge of an ogival cylinder and the creeping wave con-

tributions from a wedge-cylinder for H-polarization. The results of the study

showed that such sources of non-specular scattering can indeed be reduced,

but only at the expense of treating a portion of the surface which is a significant

fraction of the wavelength (Knott and Senior, 1973; Knott, Liepa and Senior,

1973). Having established favorable surface treatments for this polarization,

we turned to E-polarization, for which the leading edges of the bodies become

the dominant source.

Preliminary runs of RAMIB were for the bare ogival cylinder so as to
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establish reference levels against which to gauge the success of candidate

surface treatments. The first test run for the bare body for E-polarization

was unacceptable; the surface fieids rose to abnormally high levels at the

* trailing edge and the scattered fields were some 10 dB greater than those

observed in experimental work. That the program failed was corroborated

by the application of GTD as well, which, at least within 60 degrees of edge-on

aspects, agreed with the experimental patterns to within 2 dB. Clearly, some-

thing was wrong with RAMIB for E-polarization.

The difficulty had not been resolved by the time the Final Report of the

predecessor Contract had been prepared, but a series of tests had been under-

taken in an effort to determine if the problem could be circumvented. Reasoning

that since the program had worked quite well for the circular cylinder, it must

be the sharp edges of the ogival cylinder that gave rise to the problem, so we tried

replacing the edges with rounded caps of small radii. Although this ploy tended

to destroy the very feature that gives rise to non-specular scattering, it was at

once promising: the disagreement between measured and computed results

dropped from 10 dB to only 4 dB. Then, reasoning that since the small radii

of the caps actually resulted in dense surface sampling near the ends of the

cylinder, we verted back to sharp edges but we clustered the sampling points

quite heavily there. Subsequent tests showed that progressively better results

were obtainable with progressively heavier sampling but this can be carried only

so far; the dense sampling at the edges greatly reduces the number of points

available for distribution over the remainder of the body. Although we were

able to reduce the disagreement between measured and computed patterns to

2 dB, we were disappointed by the devious means required to do so.

In the meantime we had received another program (RAMC) from AFAL

which solved the integral equations (4.47) and (4.48) for a metallic body in the

presence of purely resistive sheets for E-polarization. Like RAM1A, RAMC

treated a specific geometry, namely a metallic circular cylinder surrounded
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by a concentric resistive sheet of constant resistivity, and it was too rigid to be

used in this form. The program was modified so as to more fully suit our needs

and the modification was named REST. Unlike RAMC, REST permits the user

to place resistive sheets anywhere (even within the metallic core! ) and our first

test of REST was for a metallic ogival cylinder with no resistive sheets at all.

When compared with experimental patterns, the computed data agreed quite

well, but it raised a question: why did REST perform so well while RAM1B

did not? The answer is, of course, that REST is based on equations (4.47)

and (4.48) for E-polarization while RAM1B is based on equation (2. 17), which
has the secotid order singularity in one term.

For the special case of incidence normal to the cylinder axis, equations

(2. 16) or (2. 17) may be used for E-polarization, of course, but for numerical

convenience (2.16) obviously has an advantage. In addition, the computer

program RAM1B could be greatly simplified since the generation of the matrix

elements for both E- and H-polarizations involve identical terms. Thus we

put aside program RAMlB and constructed a far more efficient and accurate
version. It is called RAMD and a listing of it is given in Appendix B. As will

be shown in a moment, RAMD produces satisfactory results for both polarizations,

at least within the constraints of the impedance boundary condition.

In summary, we started the predecessor Contract with an impedance

boundary condition computer program which was then modified for specific

use in non-specular camouflage studies for H-polarization. The present Contract

was started with this program on hand, plus another which solved the E-polarized

resistive sheet geometry. This second program was also modified for specific

use in E-polarization studies. Finally, a streamlined and compressed version

of the first program was constructed. We now have available programs REST,

for the resistive sheet problem, and RAMD for the impedance boundary condition.

As will be pointed out presently, we are in the process of constructing yet a third

program that combines the desirable features of both programs, valid for either
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polarization. This pL-ugram will become, we believe, a vital tool in the

remainder of our investigation of non-specular camouflage treatments.

5. 2 Comparisons of Computed and Measured Results

Programs REST and RAMD solve a two-dimensional problem, of course,

whereas laboratory measurements can only be made of finite, three-dimensional
oLstacles. Thus, in order to compare measured and predicted patterns, one or
the other must be scalec, by the factor derived in a previous report (Knott, Liepa

and Senior, 1973). The relation between two- and three-dimension cross

sections i3

a3 (Lý. 2 c,2

)t2 '7

where L is the length of the finite cylhader. Measurements were made both

by AFAL and the Radiation Laboratory and, since different frequencies and

calibration units were used at the two installations, it is conveaient to scale

the measured patterns down to the two-dimensional system instead of scaling

the computed patterns up to the measurements.

The AFAL measurements were made at 7.5 GHz for 18-inch long cylinders;

§ since AFAL routinely presents its data in dB relative to a square meter, 3. 79

dB must be added to the patterns in order to obtain the effective two-dimensional

results. The Radiation Laboratory measurements were made at 3. 0 GHz for a

cylinder 35 inches long; since our data are routinely presented in dB relative

to a square wavelength, 22. 00 dB must be subtracted in order to carry out the

comparison with computed results. The Radiation Laboratory patterns were

presented in the previous report, but only one comparison was made there with

predicted patterns. The AFAL patterns have not yet been published.

Figures 5-1 and 5-2 are comparisons of measu.-ed Radiation Laboratory

backscattering patterns of a metallic ogival cylinder 3 wavelengths wide for E-

and H-polarizations, respectively. Only 90-degree segments of the patterns
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are presented, and the angular scale runs from edge-on at the left (zero degrees)

to broadside i.,idence at the right (90 degrees). Except for a 1 dB error in the

edge-on region and a 2 dB error at broadside, the agreement between measuredf and predicted patterns for E-polarization kFig. 5-1) is quite good. And, except

for the 4 to 5 lB discrepancy in predicting the null near 35 degrees for H-polariza-

tion (Fig. 5-2), the same kind of agreement prevails. It should be noted, however,

that the computed H-polarized pattern seems to be shifted 2 degrees toward edge-

on incidence. For both polarizations the measured broadside return is less than

the computed value, possibly because the target was measured at a range only

half of the customary 2L 2/X.

When the ogival cylinder is covered with a layer of Emerson and Cumming

SFT-2. 5 absorbing material the agreement is not as good, as may be seen in

Figures 5-3 and 5-4. Based upon the measured electromagnetic properties of

seveial samples of this material by AFAL, a constant normalized surface

impedance Z = 0. 840+i 0. 187 was specified in the computer program inputs

data. rbis impedance level corresponds.to a normal incidence power reflection

coefficient of -17. 5 dB, and if the computed broadside cross sections in Figures

5-.1 and 5-3 are compared, it w.ll be seen that a reduction of 18. 7 dB was pre-

dicLed, reasonably close to that obta-aed from the measured properties of the

material. However, a comparison of the measured and computed patterns of

th.e coated ogival cylinder for E-polarization show no such agreement. In the

edge-on region the computea cross sections are of the order of 6 dB greater

than the measured values, and at broadside are some 5. 5 dB lower. Moreover,

such pattern characteristics as lcbe structure anw null positions are not well

produced. The disagreement is not quite so bad for H-polarization (Fig. 5-4),

but the measured pattern does not exhibit the deep nulls predicted by the computer

program in the broadside aspect angle region. Interestingly enough, the computed

broadside cro-s section reduction is only 16. 3 dB (via comparison of Figs. 5-2

and 5-4), and falls Qhort of the normal incidence value by precisely the amount
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that the computed E-polarized reduction exceeds it. Nonetheless, we must

conclude that even in the presence of possible experimental errors, the back-

scattering from the absorber covered ogival cylinder is not well modeled by a

constant surface impedance determined by the normal incidence properties of

the coating.

Figures 5-5 and 5-6, like Figs. 5-1 and 5-2, are for a metallic ogival

cylinder, but in this case the measured patterns were provided by AFAL. Thereader will note a change in the amplitude scale on these and the remaimng

figures, since AFAL uses a 60 dB dynamic range while the Radiation Laboratory

uses 40 dB. In both cases the cylinder was 3 X wide and, although the AFAL

cylinder was shorter than that measured by the Radiation Laboratory, the

S: difference in length is automatically accounted for by the scaling factor men-

tioned earlier. The measured pattern for E-polarization (Fig. 5-5) lies below

the computed pattern by about 1 dB and were it not for this constant "bias", the

ji fit between thc two would be remarkable. The disagreement noted in the

Radiation Laboratory data for H-polarization (Fig. 5-2) carries over to the

case oi the AFAL data in Fig. 5-6, where again it can be seen that the computed

pattern seems to be shifted slightly toward the edge-on aspect angle.

Figures 5-7 and 5-8 are for the coated ogival cylinder, but this time the

coating was Emerson and Cumming SFT-11. 0 material. Based on measurements

of the electromagnetic properties of the layer, the normal incidence surface im-

pedance is computed to be Z = 0.471 - W0. 400, and this was the impedance used

as input data for program RAMD.. Theoretically, at least for normal incidence,
the radar cross section should be reduced by 6. 97 dB using this impedance, and

for E-polarization the computed reduction was in fact 6., 9 dB, as judged from a

comparison of Figs. 5-5 and 5-7. and for H-polarization 7.4 dB, from Figs.

5-6 and 5-8. The measured E-polarized pattern (Fig. 5-7) is about 1. 5 dB

greater than the computed one a, broadside, and from 1. 5 to 2. 0 dB lower in the

edge-on region, but the agreement is otherwise quite good., For H-polarization
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(Fig. 5-8), the measured and computed patterns nearly coincide at broadside

incidence, but there is some disagreement in the details of the lobe structure

at edge-on and in the intermediate aspect angle region.

Figures 5-9 and 5-10 are patterns of a metallic wedge cylinder formed

by mating a 25-degree (total) angle wedge with a circular cylinder of electrical

radius ka x 3. 0. The measured pattern for E-polarization (Fig. 5-9), like that

of the metallic ogival cylinder, lies about 1. 5 dB below the computed one and

were it not for this fairly constant difference, the two patterns would be in

almost perfect agreement. The agreement for H-polarization (Fig. 5-10) is

not quite as good, with some of the computed nulls shifted toward the edge-on

incidence side of the pattern and, in particular, with a 6 dB disagreement in

amplitude at the edge-on aspect. Note that since the wedge angles of both the

wedge-cylinder and the ogival cylinder are the same, the edge-on E-polarized

returns of both bodies are the same. Figures 5-1, 5-2, 5-5, 5-6, 5-9 and 5-10

all suggest that the computer program performs quite well for metallic bodies
for E-polarization and that, while less accurate, it may still produce acceptable

patterns for H-polarization. Some of the differences noted may be due to align-

nient difficulties and near field effects, and not least, to the neglect of end

effects in scaling the three-dimensional patterns down to the two-dimensional

"o~omputed results.

Figures 5-11 and 5-12 display the wedge-cylinder patterns when the

body is coated with the SF-11. 0 material mentioned earlier, The agreement

for E-polarization (Fig. 5-11) ranges from 1. 5dB at the specula, angle to 3 dB

or so in the regions of the nulls, and is as good as was noted for the ogival

cylinder. The discrepancy for H-polarization (Fig. 5-12) is somewhat greater,

about 3dB, at the specuiar angle, but rises to as much as 10dB in the edge-on

region.. Comparisons of the specular cross sections in these figures show

that the computed reduction is 6. 1dB for E-polarization, which is 0.9 dB
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short of what might be expected for n,-rmnal incidence as judged from the

material properties, and is 7.5 dB for H-polarization, which is 0.5 dB

better. The measured cross section reductions considerably exceed the com-

puted ones, however.

The agreement between measured and computed patterns is quite good

for metallic bodies, nearly as good for coated bodies for E-polarizatio ., and

perhaps disappointing for coated bodies for H-polarization. We believe the

errors are traceable, in part, to the shortcomirgs of the surface impedance

boundary condition, wvhich, while conceivably justifiable over smooth surfaces

of large radii of curvature for sufficiently lossy materials, is not nec.essarily

- - valid near edges. From a study of the integral equations presented it Chapter

H, one would conclude from that a surface impedance boundary condition tends

to irterchange the roles of E- and H-polarized scattering sources. Hence the

surface impedance would, for example, increase the trailing edge return for

E-polarization. If this were truly the case, the design might have to aim for

a surface impedance of about unity, since this would be optimum for arbitrary

polarizations.

However, the experimental data in Figs. 5-1 through 5-12 show no such

inclination. In every case the radar cross section in the edge-on region was

reduced; no enhancement took place, as might have been predicted from the

duality of the impedance boundary condition integral equations. Therefore the

effective surface impedance near the edges was liifferent for the two polarizations,

even though the edges were treated with the same physical materials. This is

indeed fortunate, for it gives us the kind of control we require., the optimum

surface impedance for one polarization is manlestly not optimum for the other.

Thus, instead of being disappointed in the lack of -greenient between the

measured and predicted patterns o' these coated objects, we take heart: the

disagreement shows that selective control is still available.
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5.3 Single and Double Edge Treatment of the Ogival Cylinder

Although it is doubtful that an impedance can be defined near the edges

of a coated body on the basis of the normal incidence properties of the coating

alone, there is no question that some impedance can be assigned. What is not

clear is how we might deduce this impedance from a knowledge of the material

properties and the local edge geometry, and indeed, it is via the expansion of

program TWOD that we hope to answer the question in the coming months.

The impedance boundary condition integral equations do not in themselves

provide the answer. They merely offer the promise of providing a solution to a

given scattering problem for whatever particular impedance is selected to

represent the relation between the tangential surface fields. Not knowing at

present how the H-polarized impedance near an edge is related to the E-

polarized impedance there, we shall assume for the time being that they

are equal. We now pose the question, how would an optimum treatment for

one polarization affect the performance for the other, assuming that the

impedance for the two polarizations is the same?

To obtain some idea of the possible degradation in performance, an

ogival cylinder was chosen as a test obstacle because the offending source of

non-specular scattering z', from the leading edge to the trailing edge as

the polarization is rolled from E to H. We assume that a parabolic (square

law) impedance distribution, rising to a terminal value of Z = 2. O+iO at thes

edge, is optimum for H-polarization when 1 k of the trailing edge surface is

treated, the constraints of the optimization being due to, say, external con-

siderations such as weight, layer thickness, and the like. Normally, only

the trailing edge should be treated, but if the cylinder must also be viewed

Sfrom the rear, then the leading edge should be included.

Figure 5-13 summarizes the results. As seen on the left side of the

I diagram, a trailing edge treatment aloiie (the alternating solid-dashed line)

reduces the return by 2 dB at precisely edge-on incidence, but out to about
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40 degrees an average of 10 dB or so is available. The treated edge becomes

a "leading" edge if we shift from the left to the right side of the diagram, and

k there it can be seen that the cross section is actually enhanced oy 5 cB over

the bare body level, that a deep null is created at 165 degrees (corresponding

to 15 degrees from edge-on), and that the averaged cross section values in the

140 to 180 degree range have not been materially affected. In fact, an envelope

sketched through the peaks of the lobes would seem to describe the peak ampli-

tude of the bare body echo as well as that of the body with a single treated edge

(when that edge is presented toward the observer). Thus a favorable trailing

edge treatment is completely sacrificed if the edge is viewed from the rear.

This being so, it might be expected that treating both edges of the body

would be useless, for then a coated edge would be presented to the observer

regardless of whether he viewed the cylinder from the front or the reae-. Such

is not the case, however, as can be seen from the level of the dashed line in

Fig. 5-13, representing the effect of a double edged treatment. In the inter-

mediate aspect angle range from 45 to 135 degrees, the double edged treatment

smoothes out the peaks and nulls of the bare body pattern, and the averaged

cross section levels are scarcely different from those of the metallic objects.

But in the edge-on regions, a 7 dB reduction is still available, although there

is a substantial enhancement of about 6 dB at precisely edge-on. We conclude

that, although a trailing edge treatment offers little benefit if viewed from the

wrong direction, a double edged treatment helps to recover the loss in perfor-

mance. The recovery is not complete, however, and some performance is

sacrificed.

This does not seem to carry over to the case of E-polarization, primarily

because the trailing edge does not appear to be a source of scattering. As

shown in Fig. 5-14, for example, nothing is lost by treating both edges of

the cylinder. Aside from a shift in the positions of the peaks and nulls of the

pattern, the averaged amplitudes of dhe scattering from both the single and
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double edged treatments are about the same, but the double edged version does

have the virtue of reducing Lhie return in both the forward and backward directions.

The cross section reduction available for E-polarization is substantial, amounting

to nearly 20 dB within a 40-degree range of edge-on incidence. Thius, at least

under the "optimized" conditions specified for this particular case, H-polarization

is likely to suffer most from the double edged treatment, with the E-polarized

cross 6ection being scarcely of concern.

The above results were obtained using program RAMD and it was of

interest to perform the same kind of test using program REST, in which

resistive sheets are employed. We chose a sheet 1 k wide having a parabolic

resistance variation, with the terminal (outer edge) resistance equal to twice

the impedance of free space. Thus the sheet width and the resistance variation

were analogous to the surface impedance treatment used in conjunction with

RAMD. The results are displayed in Fig. 5-15 and, like those in 5-14, the

double edged treatment entails little or no loss in performance compared with

that obtai,,ed by treating a single edge.Ii
There are two minor differences between the results of the resistive

sheet and surface loading methods, however. The first is that the resistive

sheet, since it projects outward from the bare body, increases the effective

length of the scatterer. Consequently the lobe structure tends to be more

detailed and the broadside cross section is slightly greater. For the 1 X sheet

width used in the test 3f Fig. 5-15, this enhancement amounts to about 1.5 dB.

The second difference is that the impedance loading method, when extended

over a surface distance equal to the sheet width in the above test, offers a

slightly better cross section reduction. The improvement amounts to 2 to 4

V •dB in the end-on region and it persists into the broadside region where the resis-

tive sheet actually produces an enhancement.

As was done under the predecessor Contract for the trailing edge with

H-polarization, we also studied the effect of the impedance distribution near the
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leading edge for E-polarization in the present Contract. The study was not

exhaustive, but the results, some of which are shown in Fig. 5-16, suggest

that the leading edge treatment is not nearly as difficult to perform for E-

polarization as was the trailirg edge loading for H-polarization. The angle

of incidence was held fixed at 25 degrees from edge-on (as in the H-polarized

studies previously mentioned) and two types of distributions were imposed.

The length of the treated surface ranged from 0.5 X to 1. 5 , the latter covering

half the body.

The four curves plotted in Fig. 5-16 are typical of all the data collected

for this case. As the figure shows, slightly less performance is obtained for

shorter surface loadings, and it seems to matter little whether a linear or a

parabolic distribution is employed. The maximum impedance used in the

study was Z - 2. 0+iO (at the leading edge) but the curves seem to be continuing5

downward monotonically. They suggest that the scattering does indeed arise

from the edge itself and that the loading might be compressible into a narrow

strip of surface near the edge if the impedance can be taken to a high enough

level. A cross section reduction of 13 dB is apparently attainable if the leading

edge impedance is as low as 1.3 times that of free space. The form of the

curves is much like that provided by resistive sheets placed in front of the

cylinder.

5.4 Reducing the Number of Sampling Points

The expansion of program TWOD to include magnetic was well as dielectric

properties of physical materials, for H-polarization as well as E, will produce

a useful tool for our task. The program will be based upon the integral equations

for thin layers, but it is not inconcel-' -ble that relatively thick coatings may

have to be studied, or even coatings whose thicknesses are variable. Hence

it may be necessary to synthesize such coatings by stacking up several thin

layers. This amounts to sampling in volume instead of area and, unless the

total ni.'umber of sampling points is increased, it will require that the points be
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redistributed. Some parts of the body will therefore be sampled les densely

than others, and we ran a sequence of tests to establish how the ccouted far

fields might be affected by 9parse sampling.

Again the ogival cylinder was chosen as a tebt obstacle and program

REST was used to compute the backscattering. No resistive shuets were

deployed, hence the patterns produced were of the bare body. The total number

of sampling points on the profile was increased in steps of six from a minimum

of 24 to a maximum of 100, producing nominal surface sampling rates from 4

to 162/3 per wavelength. Assuming that the highest sampling rate produces

"perfect" results, the errors produced by less frequent sampling can be estimated

by comparing the computed backscattering patterns. This comparison is shown

in Fig. 5-17 for a selection of 5 sampling rates.

The errors are greatest in the intermediate aspect angle range and are

smaller at both the edge-on and broadside aspects. Expectedly, Ihe error

increases with decreasing sampling rates. From the •'•ta display, one finds

that 10 samples per wavelength yield 0. 5 dB accuracy for the enti', aspect

angle range, but if only edge-on incidence is of interest, as few is ' samples

per wavelength will suffice. Figure 5-18 is a plot of the errors incurred at

three discrete aspect angles, one of the angles (0 = 58 degrees) being that at

which the error is greatest. It should be emphasized that these p!ots are for

a bare ogival cylinder and that the behavior depicted may not necessarily apply

to other bodies or, indeed, to the same body when coated.

If it is only the leading edge that dominates the far field scattering, as is

true for E-polarization, it may be possible to use a small wedge-cylinder, as

suggested in Fig. 5-19. In this case, the sampling rate was held fixed at about

16 samples per wavelength, and the electrical size of the body was varied from

ka =0.625 to ka = 3.0. The number of sampling points ranged from 20 to 96,

yet the edge-oa return varied by less than 0. 3 dB throughout the range. These

data suggest that a great number of sampling points may be released for other
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parts of the body (e. g., for the coating), provided the original scattering

source is preserved. Since the dominant source then is the leading edge,

the size of the cylinder is relatively unimportant, but in other cases, such

as H-polarization for the same body, this is no longer true. Thus, in the

event that it becc .es necessary to re-distribute sampling points, there are

certain instances for which it can be accomplished with but a small sacrifice

In accuracy. The re-allocation is not possible in all cases, of course, and we

may have to search for other techniques should the need arise.
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VI

CONCLUSIONS

In this report we have described most of the work carried out since the

publication of the Final Report (Knott et al., 1973) uiwir the predecessor Con-

tract. One of the key features of this study is the detailed examination of the

integral equations in two-dimensional scattering presented in Chapters II and

lV. For an impedance boundary condition imposed at the surface, the analysis

has revealed that there is a choice of integral equations appropriate to a solid

body, and by using this fact we were able to circumvent the difficulties previously

encountered using program RAM1A (B) for E-polarization. The result, now

designated RAMD, was a far more efficient and effective program and is listed

in Appendix B. RAMD has been used to examine the effect of tapered impedances

on the scattering from ogival Vnd wedge-cylinders for E-polarization. Some of

the data obtained are presented in Chapter V, and are compared with experi-
S~mental data.

One of the shortcomings of an impedance boundary condition is the difficulty

of relating the surface impedance to the electromagnetic properties of a material

necessary to simulate it. To provide a more explicit connection to material

properties, we have given considerable attention to the concept of resistive sheets

used either individually, or in combination to simulate a layer of finite thickness.

For the problem of (electrically) resistive sheets with E-polarization, a computer
program is available and is designated REST. We have employed it extensively

and successfully to assess the sheet performance, but the results obtained are

reserved for a future report. However, it is important to examine the behavior

of these same sheets for H-polarization, and since we can also conceive of

'magnetically resistive' sheets, to include these in our study as well.

The derivation of the integral equations for both types of resistive sheets,

either in isolation or in the presence of a body having an impedance boundary

condition imposed at its surface, is presented in Chapter IV. In essence, this
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serves to set the stage for the work we are now doing, and the construction of

a computer program for generalized resistive sheets is now almost complete.

Although at least one of the integral equations is characterized by a 'second

derivative singularity' which is difficult to handle, the analysis and testing

described in Appendix A shows how it can be treated numerically. The

fruits of this work will be the subject of the next report.
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APPENDIX A

SOME COMPUTATIONAL CONSIDERATIONS

Many of the integral equations derived in Chapters II and IV resulted from

a limiting operation of the form

ln I a f(s')H (l)(kr)ds' (A. 1)
p--*C an0

C

if p is not on C, the differentiation and integration -an be interchanged to give

lim

C

where

K(s, s') =k(A- )H l)(kr) -k(n. r)H ()(kr) , (A. 3)

but in the limit as the observation point approaches C, the kernel is characterized

by a "first derivative (non-integrable) singularity" and is infinite at s' = s. How-

ever, (A. 2) and, hence, (A. 1) can be evaluated by treating analytically a neigh-

borhood of the point s' = s, and when this is done we find

lira f(st)(, r)H0') (kr)d(ks') = ±2if(s) + f ). k 1)d ,

C OC (A. 4)

with the upper or lower sign according as p approaches C in the direction ^n,

respectively. The slash across the integral sign denotes the Cauchy principal

Value, and since the first term i6 simply the self cell contribution, the right hand

side of (A. 4) is quite convenient for computation.
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Unfortunately, several of the key integral equations involve a second

derivative kernel in addition or instead, for example

S-->lim f (s 1) -2- s Ids' (A, 5)

C

where K(s, s) is given in (A, 3), and this is not quite so easy to handle. Even

the existence of the limit is mathematically in question, but the form that preceded

(A. 5), viz.

lim 3 f(s 1)K (s, s Ids (A. 6)

p_-*C dn
C

is capable of justification and physically represents the field of a current sheet

evaluated at its surface.

To see how we can treat it, consider

1 02 I , ~(1) ,x2+2d,7

I(xy- a2  J(x')H0 (k (x-x) +y)dxT (A.7)

kay20

appropriate to a planar sheet. If x is on C 2nd A is a small interval of width

26 centered on x' = x, I(xy) -an be written as

I(x' y) I ,(x,y)+1 2 (x,y)

where

I (Xy a2 H= (k \ -LyH()dx' (A.8)

JC-A
:•_ •'1 a2 SJt)•l (x-• ) X"+2

::'I~ (X 12xy) = - J(x')H i) (x- )dxv (A. 9)
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Taking I1 first and using the differential equation for the Hankel function, we

have

2 2I , y ) ( ~ x ,x - x ' ) _- y H )

C-A (X-xl 2  ( X

-ky2 H0 1) (k-V)(x x )2 2

0x' +y

and since the integral is convergent for all y including y = 0,

H H(ll)(kIx-x'P
lim I (x,y) J(x) x dx' (A. 10)

Turn nw to 1 w C-A IxxI

Turning now to 12, we remark that if k 6 +y' << 1 and J(xt) is slowly varying

in the vicinity of x' = x,

~A iT
y6i

:•: ~where /'= e• with -y= 0. 5772... (Euler's constant). On carrying out the dif-

,-•; !ferentiation with respect to y,

%_Ii2(xy) -_ 4i6 J(x)
2xQ xt irk(52 +y2 )

from which we obtain

t7Tk(6 +yli

Im i 2 (x,y) J(x) (A 11)',y - -0 2 7 k 6

and hence
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y-- I(xY) - J J(x) x, x' (A. 12)

C-A

It car t- verified that this result is unaffected if one or both of the differentiations

are carried out prior to integration.

The right hand side of (A. 12) is not inconvenient for numerical evaluation,

but in contrast to (A. 4), there is no guarantee of increased accuracy as the cell

size 26 is reduced. The first term is the self cell contribution and is inversely

proportional to the cell size. The factor multiplying J(x') in the integrand

-2increases as (x -x') as x' approaches x, but since the self cell is excluded, the

integrand is finite for all x'. However, over the immediately adjacent cells the

integrand can vary by as much as an order of magnitude, and it will almost cer-

tainly be necessary to take account of this variation through subdivision of these

cells or by integration over them.

This approach can be tested using the simple example of a plane,

electrically resistive sheet illuminated by an H-polarized plane wave at non-

glancing incidence. If the sheet occupies the portion 0 <x_ <L of the plane y 0

and

H i -z e-ik(x cos a+y sin a) (A. 13)

eq. (A. 12) can be written as

sie-ikx cos a= R(:1M:) lrn 1 a 2  J~'H(1 kL( ' I 2+y2 )
-0 y ~0 4k 2Y 0~tH1( ~-9yx

and hence, from (A. 12),

-ikx cosa a dx '

sinae Y 0R( )+ J(x)+ 4 J(x') x-x1 dx'

0 -jC-(A. 14)
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Equation (A. 14) has been programmed for solution and the current J(x)

computed in the particular case of a highly conducting (R = 0.01 ohm) strip 3A

long for plane wave incidence at the angle a = 155 degrees, corresponding to the

peak of the traveling wave lobe in the backscattering pattern. From an examina-

tion of the data, it is believed that 48 sampling points (so that 26 = X/416,

implying k6 = 0. 196), with the cells immediately adjacent to the self cell sub-

divided into 25, and the next 5 cells on either side each subdivided into 10, are

sufficient to give data which are effectively "exact". The resulting curve for

IJWx)J is sý. wn in Fig. A-i and has the character expected in a traveling wave

situation. The effect of reducing the number of subdivisions is illustrated in
Table A-i, from which it appears that if we are to keep the errors less than I per-

cent, it is necessary to subdivide two cells on either side of the self cell, with the

nearer being more finely subdivided. Many of these same tests have also been

performed with 24 and 32 sampling points (or cellsý. It is found that the errors

TABLE 2-i: ERRORS IN lJ

subdivision aver. (0/i) max. (0/0)

Ix 25, 5x 10 assumed 0

1 x25, 4x 10 0.06 0.09

1 x25, 3x 10 0.11 0.18

1 x25, 2x 10 0.09 0.21

1 x25, 1x 10 0.32 0.61

I x 10, 1x 10 1.53 2.23

1 1x25 3.39 4.85

Slx 10 4.53 6.38

are significantly increased. As an example, with N = 24 and six cells on each

I!{ side subdivided as in the first line of Table A-I, the average and maximum errors

are 7. 31 and 16. 03 percent respectiveiy.

In any subdivision process the integrand must be computed a corresponding

number of times, and any massive subdivision is therefore an inefficient and time

consuming procedure. If the strip is divided into 48 cells, subdivision of the
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cells adjacent and next-to-adjacent to the self cell by 25 and 10 respectively

requires almost 1500 additional computations of the Hankel function even when

the symmetry of the matrix is taken into account, and this increase, consider-

ably the time involved in generating the nmatrix elements. However, subdivis.ion

is just a simple method of numerical integration, and since the unknown current

J(x) is still given its value at the midpoint of .he cell, the function being integrated

is entirely known. This suggests the possibility of an analytical evaluation. The

contribution of the kernel from the nth cell on either side of the self cell in eq.

(A, 14)

(2n+1)6 H(1)(U)

I = dt (A. 15)n 5t
(2n-1) 6

and from the recurrence relations for the Hankel functions (or, alternatively,

from the differential equation for H (1)(kt) ), we have
0

(n (2 - -1k C0(2 6 Hl (nO 6 t)", (.6

-k6

The integrand that now remains is much more slowly varying than the one in

(A. 15) , and it is not unreasonable to approximate (A. 16) by

I =H -1 U H) - H( 2n+1k +2k6H 1)(2nk6)
n 1L 6)~nJ 0

r.• Somewhat surprisingly, when this formula is used for n = 1, 2, i.e._, for

two cells on either side of the self cell, with k6 = 0. 196, the current is in error

by more than 10 perccent. Most of this error is attributable to the evaluation of

the integral in (A. 16), and As riot substantially reduced when the Hankel function
-- (1)

H- (x) is replaced by its logaiithmic approximation for small arguments and

the integration carried out analytically. On the other hand, when the cells cor-

responding to n = 1, 2 are subdivided into 5 and 3 parts respectively, the

average and maximum errors drop to 0. 19 and 0. 42 percent respectively, and
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even with the coarser subdivision 3 and 2, the errors are still only 0. 37 and

0. 68 percent. Such a performance is comparable to that achieved on dlvidiný,

the same cells in (A. 15) into 25 and 10 parts (see !ine 5 of Table A-1), and

requites only about 300 additional computations of the Hankel functions in place

of 1500. As an alternative to subdivision, integration using the three-point

Simpson formula has been tried. When applied to the cells corresponding to nL

and 2 in eq. (A. 16), it turns out to be just slightly more efficient than subdivision

of the same calls into 3 and 2 parts respectively, but produces much better

accuracy, the average and maximum errors in JJ I being 0. 12 and 0 40 percent.,

In contrast, when the same integration formula was applied to the original expres-

sion (A. 15) for the cell contributions, the errors were larger by two orders of

magnitude.

All of the above constitutes the direct approach to an integral of the form

shown in eq. (A. 7), and though it has turned out to be relatively straightforward,

it is not the only way in which the second derivative singularity can b- handled.I If, for example, we gc back to (A. 7) and use the fact that

( a2$+ 2) (~1)( 7)7 ,
•- i + +k . 1) NF(-x )+y =0

the normal derivatives can be replaced by tangential derivatives and one (or both)

of them elimrialed by partial integration. This method has been explored in some

detail. Integrating only once by parts, we obtain an integral expression for

I(x, y) involving the current and its first derivative, plus contributions from the

end points of the range of integration. The more singular integral is that con-

taining a-j, but in the liinit as y--.-0 the self cell contribution can be evaluated

analytically and turns out to be zero. Hence, for 0 -. x <- L,
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-ur...a J i' . ...X i ll).

lim I(xy) -- ax- x-x'(2);A (-) 1x 1 1kj

-k (L 1 l)(k)xf-x,;)dx,

()0

1J) (kLx] ) + J(O~H (kx) (A, 17)

and though we are now left with twice as many unknow-ts as we had uoefore, the
aJ

assumption of a locally linear variation cvf J(x') enables us to express ai in

terms of the currents over the neighboring cells.

Unfortunately, the end-poiat contributions -Ps a problem. Each is

infinite when the observation point is at tho_- end in question, and while it can be

argued that in the moment method the obse-zation never does lie _wtually at an

end, the contribution will still increase ind&--dtel-v with decreasing cell size In

effect, we now have a self cell contribution analogous t- tA. 11), out appropriate

only when the self cell is at an end. If, on the ozer himd, the self cell contribu-

tion is separated out prior to partial integration, the result obtained is no dif-

ferent from integrating by parts the integral in (A- i2). A&n ass-umption which

then expresses ai in terms of J is merely equivalent to an inter-polarion

formula for evaluating this integral.

For these reasons vw e have found - convenient to use the direct approach

and the onty task which now remaina is t& .xterJ it zo a non-planar surface )r

sheet. ;n place of (A. 7) ',,L integral I: concern, to us is

I \ n (s )(".' r)FH kr1 k: t ' (A. 18)

aC

and a typical integral equation is



Y E 1 (s) YOR )J (s) + -h1 lm I (A. 19)

(see eq. 4. 15).

If p is not on C, we can interchange the derivative and integral operations

in (A. 18) to obtain

VV4- 3k (n')(' A~ . r (1)(kr, d(ksl)
k Ban 1 J

H (1 (kr) (1),
J~~~~~~ ~ ~~ W - - r +(i-)nrH kr))>d(ks')

which becomes

jC

4-• J(s8• -)••-' •r s-( r) H 1 ()(kr)d(ks )'

(A. 20)
on using the differential equation for H 0(kr).

0
To find the limit as the observation point p approaches C, it is necessary

to treat analytically the contribution of the self cell Z, fo the second irtegral in

eq. (A. 20). Since

S'lim \)A4
-n(s r)n P)- ((1. r)(s)' rN) H (W + J(s)I ~' HC~~k' = k6

where 26 is the width of the self cell centered on s' = s, we have
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lir = + -4 J(s)+ J(s')(,' . A)(•.r)H

P 3 C 7k6 sa ) k~~s,C

+ S H)(kr)d(ks').

CBA

(A. 2 ()

But 

l(kr)

S ( )H =.-()s.r)(*2 .)Hl (kr)-(n".r)(nr H
k sr H kr

0

and
A)1 + .r)(,. A) =--n .

Hence

p --mclim 4i n ) H(I (kr)d (ks')

r I = + - -• J(s)+ J(s 6( ,' . n ()H

UC

E + J(s') (s' r)H1(kr)- s

and when this is substituted into eq. (A. 19), the integral equation for a non-planar

sheet becomes

IleE kY0 R (S) + k6 J(S) +__ 5J (s1) (n^ -' *\) H 1 (kr)d(ks')

s1 +- 'r) kr4 J(s') ,)

S,)C-& (A. 22)
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Equation (A. 22) is the analogue of (A. 14) and (A. 16) combined, and is

the desired result. Though the integrand of the second integral is a rapidly vary-

ing function of s' for small s' -s, the particular advantage of this form is that

if J•o') is constant over a cell (as is assumed in the moment method), the contri-

bution of that cell is given precisely by the difference in the end values of

(s. O)H1 (kr). For the first integral in (A. 22), the self cell contribution vanishes

as the cell size tends to zero. The analogy with the results for a planar sheet is

now complete.
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APPENDIX B

PROGRAM RAMD

Program RAMD solves the integral equations 2. 9 and 2.16 for a cylindrical

body satisfying a surface impedance boundary condition. Although its predecessor

progi am, RAM 1B, accomplishes this same task, RAMD is a significantly more

compact and more efficient program. This compression was achieýcd by a

reduction in the number of arrays created by the program, by the exploitation of

the duality between the E- and H-polarization integral equations, and by the

elimination of options that were seldom exercised in the former program. As a

result, RAMD occupies less than 1/3 the core required by RAMIB, implying that

the number of surface sampling points could probably be increased by 50 percent

or more. The program is manifestly shorter because it solves the simpler of the

two available equations and, not least, it produces the correct solution for E-

polarization for edged structures "hereas its predecessor did not.

In addition to the MAIN program, RAMD has five subroutines: GEOM,

HANK, ADAM, FLIP and ZFUN. The MAIN program reads control information

from the input data stream, creates the matrix elements for the geometry at hand,

sums the surface currents to obtair the far scattered fields, and indexes through

the desired angles of incidence and scattering. MAIN calls subroutine GEOM to

create the coordinates of sampling points on the body profile if the profile is

describable in terms of straight or circular arc segments but, if necessarv, the

sapnpling points may be fed in one at a time by by-passing GEOM. GEOM assigns

a specific impedance to each surface sampling point according to two options and,

should neither be su- able to the user's needs, a third option invokes a call to sub-

routine ZFUN. In the program listing below, ZFUN is merely a dummy subroutine

necessary for the successful compilation of RAMD and should be replaced by the

appropriate version required by the user.

Subroutine HANK generates Hankel functions of order 0 and 1 as required

by the integral equations. This particular subroutine differs from previous ver-

sions (in REST and RAMIB) in that polynomial approximatioa:, cf the Hankel

• 9~)



i.i

r_-_-functions are employed, a distinct advantage for large arguments; su'routine

ADAM assists HANK by summing the terms i. the polynomial. Once the matrix

elements have been filled in by the MAIN program, subroutine FLIP is called to

invert the matrix. FLIP, like its cousin ZVO8 in previous programs, is essentially

a copy of subroutine MINV from IBM's Scientific Subroutine Package. FLIP also

computes the surface currents on the profile using ".he inverted matrix. MAIN

then sums the currents and, depending on the particular options exercised on input,

produces either a bistatic or backscattering pattern of the obstacle, for either E-

or H-polarization.
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CINPUT FORMAT FOR PpnrGRAM RAMn ---RLVIcInN OF MAY, 1973 C

C CARD I FORMAT (IRA4) TITLF CARD; 14SF UP TO 7? COLUJMNS C

C CARD ? FORMAT (T2911,F1O.')) MOFfD,~CC
C. MnRF=O THIS WILL RE THE LAST RIJN FOR THIS DATA SET c
C MnRF=l THERE ARE mORE i)ATA TO RE RFA() AFT:R THIS SFT C
C KnPE=o CnMPUITP- RISFATIC SCTEIGPATTERNC

C KDDE=l CnMPIJTFS MACKSCATTFRING PATTFRN C
C ZEAC- A FACTO)R MOLfT IPLYPYG(- ALL Ft FMFKIT IMPEDANCEFS C

C CARD I FORMAT (I?,Il,Fl0.5) LL,M,WA'JFC

C LL TOTAL Ni*IYRFR OF SE(,MFN-ITs ON THF PROF IL E C
C M TOTAL NUJMPFR OF PnINTS OIN THE PRrIFILF C
C WAVFE WAVELFNGTH

C CARD 4 FORMAT (1?,I3,'FE1O.5) IPP,II)PT,FIRST,tAST,INK C
C IPP~1 F-PnLARIATION C

CIPP=? H-pnLARI7ATTON C
C, inPT=s RODY GPnMFTRY RPAF,, IN POINT RY POINTc

C lOPT=1 RODY rFnmETRY GENFRATFr) INTFRNALLYC
C FIRST INITIAL SCATTERINGr AND IN(.IDENCE ANcLF C
C LAST FINAL ANGLF C
C, INK A"G('IILAPZ INCREMENT C

C, CARD 5 FORMAT (I2.11,5FI0.9) N,IMP,XA,YA,XA,YR,ANG C
C N NHMRFP OF SAMPLING POINTS ON THIS SFGMENT C
C, ImP=-1 IMPEDANCE GIVEN A~Y !JSFR-StIPPLIED) StjPRO ITTNF C
rC Imp=O 75ý(I)=7A+7R4S(Li*4?FX C
(7 IMP~I 7S(I)=7A,?iB*FXP(-7FX*S(I)) C

CXA,YA,XB*YR SEGMENT ENDPOINTS C
C ANG ANG(LE SUf~TFNDED) BY THE SFEGMENT C

C- CARP 6 FORMAT (5X,5FIO.5) 7A,ZBZEX C
C ZA,7H COMt-PLEX IMPFOANCE CONSTANTS C,

CZEX REAL IMPEDANCE CONSýTAKITC

C, CARD 7 FDRMAT (I?) INltc(GFR 7ERn IN CnLUJMN 2:. SHUTS C
C OF- READING. OF SFG-,,ENr PARAwETERS C.

C CAkfD 8 FORMAT (12,11,F!0.5) MORE,KnDF,7FAC, c~
C THIS, CARn IS tIISFn nNLY IF, flN CARD ?, Mf)RE-=l

C CARD) q FORMAT (I?,1-4,4Fl0.') LII.VP( II)ULIIW 0(1,2) X( 1) 0 (1), 1) C
C, LIJMP I I I) CELl- ID) N;IMIR C
C LlIMP( 19?) SEGMENT fir) NUMPFR C

aC X( I ). Y( I ) CELL COO-RIDINATES, C
C ZS(I) CGMPLFX IMPEDANCE OF THF CELL C

C NOTE: CARD 9 IS UISED DNLY IF IDPT=O AND) THERE MUSýT RE ONE SUICH CARD C
C FOR EVERY CFLL ON THE RnoY. SIMILARLY, CARDS 5,6 AknD 7 ARE WISED
c ONLY IF iOPT=1 AND THERE M11ST BF ONE EACH OF CARD,;S A AND r) FOR tACH C
C SFGMENT SPECIFIEDo ON INPUIT, C
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cnmpI FX Al(100l01 ),PHI(I100),PINK( i0P,S;IIMDFL,B1,R2,7S(100)
RFAL LASTINK
DIMFNSIf1N XflO,(100),Y.n)XN(100),YNfLOO),S(100),T)SO( 100)

01 MF-NST ON 1IMl I Pit l*iJmp( 101112 )1 1 POIL
D)A TA R FD, HH1'G

rC..... R~t A )NP~jT O)ATA ANn GFNFRATF BODY PRnFILP

R F AD ( 5,?00 ) MOPF,KnODF,7FACIIRFtO (r),?00) Li .MWAVF
RFAn (5,200) TPP, IOPT,FIRST,[AST,INK

XK=6.?P;1 RSWAk/F

I F If fPT .FO .0) rfl Tr' 10
WRiTF (6,100)
CALI, GFrOMiLlIMP,X,YX!',tYNq.DSO,?SSM.LL)

rO TO 20

10 ~RFAO (S,200) (L1MP(l,l),tJMPl,2-).X(I),Y(I),Z'S(l)

TX=XfI)-X u-1
TY=Y( I)-YrU-1)Li DSQ( I):R( T X* TX +TY*1 '.)

Xdq( I ) =-TY /DC0S( I
15YN(I1=TX/0SO(I)

20 If; (KnOF.NF,0) nn TO 25

NC,,=> I
~ NSIT=I1TFIX( (1-AST-FIPST)/TNK1

Gil TOn -i0it?S NPIT=0
NINC=141FIX( (IlAT-FIRST i/INK)

in WRITF (6,4fl0) IPO1L(lPP)tLLM,N1INC,NP.TT,WAVF

I~is 3' c S(1)=r)So(I)/W4VF
r .... CO.NJSTR11ICT MATRIX V-iI:MFNTS

riO r5 ,t~l.m
I F ( I .FO GO , TO 4 0

TX=Xf I )X
TY=YffT)-Y(J)
P SrfIT( TX* TX+TY IVY

t ~~CNR-( TX*-XNI( j+TY--YNI(.J)/P

CALL HANK fRP0, II,RIofVy
Al =I i7n7QA*DS0( j)*CNkc1'MP1fX(-fiY,RJ)I;CALL HA'JK((RP0,0*SJvAV)
R2?= I 70)7cqh*fM0( J *CMPLXI RJ9 Ry

GO TO 45
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S40 R1=CMPLX(0.9#.O.)

45 r.i (ipp.pF,).i) GO TO 50o
A(I,,))=81+B?*?S(jI)*7FAC

GO TO 59Ii50 A(I,J)=R?+BI*7S(jI)*?EAC
55 cONT I MlI

r ..... COMPUITF INCInFNT FiFLn ANOn INVERT MATkqXii TFTA=RFI)*FI RST
CT=CnS(TFTA)
ST =S I N(TP~T A)
n0 6o0 i=1,m
HOLDf=-XK* (CT*,X( I)+ST*V(I))

60 PINK( I )=CmpLx(CnS(HflLf),SIN\(HO)Lf))
CALL FLIP (A,MePIMqK,PHI , 1

C ..... PRINT OUTf CtRRFNTS AND FLFMFNT Pk(IPFRTIFS FOR FIRST ANGLE
WRITF (6,190) 10
WRITE (Aqr500)
n0 65 1=1,m
AMP=CARS(PHT (I))
PHASF=OIC,*ATAN2(AIMAG(PHI(i)),RFAL(PH-I(i)))
OFL=ZFAC*Z,( I)

6i&5 WRITF (6,?950) (LIJMP(I9,J),J=1,?),X( )9,y(I),S(T ),DSQ(I),AMP,PHASF,

I- ..... OOnPF OUT THE APPROPRIATE FIELD FACTORS
THE=EIRST- INK
IF (KOO)F.FCJ.1) GO TO 70

WRITE (6,,800) FIRST
GO TO 79

70 WRITF (A,600)
79 THF=THE.LINK

IFf (TH-F.(;T.LAST) r-.n TO 105
IF (THF.FO.FIRST) GO TO Hr-
TFl A=RF0* T HF
CT=cOs(TFTA)

4. ST=SIN(TFTA)
C,....IN THF FOLLOWING LOOP, PINK IS NOT NECESSARILY THE INCiDFNT FIEILD

00 80 j=l.m
HOLo=-XK*(CT*X(,J)+ST*Y(J))

80 PINK( J)=CMPLx(cOs( HOLf),S!N~(HOLD))I IIF (KnDF.FQ.O) GO Tn A5
CALL FLIP( A,MtPINK,PHI,?)

85SIM=CMPLX(O.0,0.o)
C ..... Ann UP THE CU)RRFNTS

nno9 qjJ=i,m
flFL=DSO(,I)*PHI(,I)*PTNKLI)
IF (IPP.Fo.1) GOn TO g0
;IIM=lSUM+DFL-*(7-FAC*7S(.i)-(T*XN(J)-ST*YN(,I))Vr GO To qj

90 SIIM=SIJM+DFl-*(1.n-7FAC'7Sý(,J)*(CJ*XNI(J)+ST*VN(J)))
95 cONTINuEF

94



SC>AT=?O.0*At~ioG1( CARS SUM) +1 .9612
WR ITF ( 6,900) THF, SC AT
cO TO 7r-

In') IF (mnRF.FQ.0) ;on TO 5
RFAP (c;,?o0) mnRF9 KOOF,7FAC
cO Tfl 18

100 FORMAT (IRA4)
150 F:ORMAT (11-11,18A4)

- 2~~~00 FORMAT (?IFO~
?90 FOlRMAT (21 'ý,SFlO.5,F1O.3,?FIO.5)
30n FORMAT (1OHOSFG NiUM,11X,?4H-FNo~pflNTs OF THF SFCMFNT,1IX,

FIRHSFGMFNT PARAMFTFRS/11H NUJM CFLLS,6X,?HXA,RX,?HYA,8X, 2HXBRX,
&?HVR,6X,21HAN1GI F RAniIuSI FP4(;TH/)I

400 FORMAT (//7'1X.14HKFY PARAMFTFRS//
f.16X,?1HINCinFNT PnltAf< JATTON,22X, A1/I

F.16X,23AHNIIMBFR OF SFG-MFN1 ýIS~n usI ?i/
F.lf6X,4TTL NIUMRFR OF PO INITS ON THF BnoDy,110l//
F.16X,3SHNIJMBFR OF iNC,,IPFNT FIFLtD nTRECTiONS,19//
FIl6X,?9H,ýJIuMRFR OF PISTATIC FOIRFCTJONS,I15)//
F.1hX,lOHWAVFtFNGTH-,F44.'5)

SOO FORMAT (11HO I SFG.,4X,4HX(I),AX,4HY(I),6X,4HS,(T),5X,6HOSQO(T),
F.4X ,6HMnO( J) , 4X, 6HARc,( j) ,4X, SHRS (I), 5X, SHXS (1)1)

Ann FORMAT (lt-fj,??X,?8HRACKSClATTFRlNG CROSS SFCTiON//?4X,
&?8HTHFTA 10*LOG,(ST'MA/IAM~rOA)/)

R00 F(IRMAT (1RI,1qX,llH9!STATIC. SCATIFRINCG CRr:SS SFCTiON/I.PXv
4 F&?9HFO)R iNCinFNT FIFLO OTRFCTTON=,F7.?//?4X,

F.?8HTHFTA lO*LIW.,(SNUGMA/LAMRDA)/)
Q~O FORMAT (lAX,FI3.?,FIS.?)
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SIiJR~nIT INF GFOm( LI IMP, X, Y, XN9YN, S,nSo:, 7S,M, LL
CnmPLFX 7c,( l0).ZA.ZB
DIMENSION X.( IO),Y( 100),XN( 100),YN(100OhDSO(100),S( 100)
DIIMFNSiON LIIMP(100,2)
DATA RFD/oO.O17 4 53 ?
I =0
L=0

C.....RFAD INPUT PARAMETERS AND PRFPARF TO GFNERAlTF SAMPLING POINTS
10 READ (S~,200) NIMPXA,YAqXBqvR,ANrG

IF (N.FOUO) GO TO 120

READ (5,25~o) 7A,7B,7EX

TX=XR-XA
TY=YFR-YA
O=SQ RT ( T X*T X +T Y* TY
IF (ANG.FO,.0.) GOl TO 20

T =0. 5* R F A N G
TRX=TX+TV*COTAN(T)
TRVY=T Y- Tx*COTAN( T)

RAD)=0.5*D/S IN ( T)
ARC=2.O*RAn* T
ALF=T/N
Di O)=2. O*RA)* AL F
GO TO 30

20 RAD)=999.999
ARC=D
010=0)/N

C,....START GENERATING
30 DO 110 JIM=l,2

L=L+1
Dn 100 J=1,LIM9?
1=1+1
LI'MP( 191 )1
LIIMP( 1.2 )=L
IF (I.FO.100) WRITF (6,400)
IF (JIMP0.2-) GO TO g0
IF (ANG.FQ.n.0) GO TO 40
S I 1`=S TN( J*ALF)

X(I)=XA+0.93*(TRX*(i.o-cnS0)-TRY*SIN0))
f Y(I)=YA+0."-*(TRX*SINOTRY*(i.o-cnoS))

XN(I)=-0.5*(TRX*cnsO)+TRY*STNQ)/RAD)
YNfI)= nsc*(TRX*SINQ-TRV*CnSO)/RAn

440 X(I )XA+0..'*J*TX/Ni

V( I)=YA+0.'S*.*TV/N
X~if I )=-TV/tJ
VN(1)= TX/D

50 (I )=0.9* J*DI) I



c.....cnmpi ITF THF impPOANCPFý

IF tIMP) 60,70,80
60 CALL ZP!Nf?A,7Rq7FXS(I),PiS(T))

70 nO TO 10")
70 (I)=7A+7B*S(I)**7FX

80 7S( I )=ZA+ZRi*FXP(-7FX*;(
cO TO 100

C ..... FROM H:RF TO 100 UF CQFATF THF SgGMFNT IMA';F
90 K=I-fq

X( I =X ( K
Y( I )=-y(K)
XN([I)=*YN(K)
YN(i)=-YNIK)

ZS( )=SiK )

[ IF ( JIM.FO.1 If TOi 11n
YA=-VA
YB=-VR

110 WRITE (6,300) L,N*XA,YA,XR,,YB,ANrG,RAD,ARC
cGO TO 10

LL=L

2'50 FORMAT (5X,rF10.9)
'300 FORMAT (13,16,3X,4FI0-5,F8.?ý,F8.3,FP.4)

400 FORMAT (36HOWARNING: OFt-VP GENERATFn 100 POINTS/)

FND



SI;RRmfITINF HANK(RNRIFY)
c.....stjFBRntTITNF RFOIIIRFS Rý>O ANn N HTHFR o OR I

DIMENSION At ?),4(7),C(?),D'7).F(7),F(7),G(7),H(7)
DATA A,p,c,n,F,F,r,,H/1.0,-?.249Qq97, 1,?6?608,-0,31h3Rh6,,

(0 .0444479 ,-0. 00 39444, 0. 000?1, 0. 367466919,060559 366, -0. 743 50384,
E0.25300117,-0.04?61;,ý14,0.004?7916,-0.000?4846,0.5,-0 -,6?49985,
!E0.?ln93571,-0.03954289,0.00443319,-0.O0031761,-0.00001109,
F-0.6366198,0.221?0912,2 682709,-l.3lt4R2790.312395l,.-0.0400976,
&0.00?7A73,0.79788456.-0.00000077,-0.0055274,-0.00009512,
F.0.00137-37,-0.00072805,0.0001,44'76,-0,78539816,-o.04166397,
F-0.o000039',4,0.00?62573,-0.0005412';,-0.00029333,0.0O')1as58,
F0O.797PA4'96,0.0O00001569,CJ0165q667,0.0001'?l05,-0.002495L1..
(E0.0011365)3,-0.000?0033,-2,1~5619449,0.12499612,0.0000565,
&-0.00637879,0.0007434R,0.00079b24,-0.000?91lhý,/
IF (P.LF.0.O) GO TO 50
IF (R.GT.1.0) GO TO 20
X=R*R/9 .0If IF (N.NIF.0) r-O TO in
CALL 4DAM(A,X,RJ)
CALL AD)AM(B,X,Y)
BY=0.6366198*ALOG,(o.5*R )*IRj+V
R FTI 'RN

10 IF 'N.NF.1) GO) TO 50
CALL AD)AM(CX.Y)
RJ=R*Y
CALL ADAM(fl,X,Y)
RY=0.6366198*ALnG(O.5*R )*RJ+Y/R
RFTUIRN

20 X=3.0fR
IF (N.NF.0) GO TO 30
CALL ADAM(F,YY)
FOOL=Y/SORT( R)
CALL ADAM(FX,Y)
GO TO 40

30 IF (N.NF.1) cO TO 50
CALL ADAMfG,,X,Y)
FnOL=Y/SORT(R)
CAL( Al'iM(H.X,Y)

40 T=Ik+V

FRV=FflOL*SIN(T)
RFTIJRN

SO N~lon
RFTIIRN

I' END



StIIROi IT I NIF 4-L IP( A ,NeX.,I AT)

cOMPLFX A( Ion* 11 )qx( 100) 9Y(100 )qf,BICA,iinLf)
DIMFNSIC1N L(100),M(100)O

IF HIAT. GT. I) r,0 TO 150o
P'=CMPLX( 1 .0.0.0)
nn R0 K=L.N
L (K )K
M( K )K
BIGA=A(K,K)
n0 20 J=K.N

0n ?o I=K.N

10 IF (CA9S(RIGA).GF.CARS(A(I,J))) GO MO 20F~ I0 rIA=A( I.,))

?n OrNTINUEFII J= (K )
IF (J.LF.K) rO TO 35
n0 i0 1=1,N
HnL0)-A(K. I)ii ~A(K I )=A( .J. I)

30 A~t .,1)=HnL r

IF (T.LF.K) GO. TO 495
00t 40 J=I 9N
HnLn=-A( J*Kf)

A( J,K )=A( J9 I)
40 A(J,IhHnLtr)
4S IF (CARS(RTGA).NF.n.0) GO TO 50

r=r, MP'LX (0.0,0.0)

RFTIJRN
go n ssI=I,N
IF (I.FO.K) rGB TO gg

55 (NTINIIF-
nn1 65 I=l,N

I IFO. n. RJ. FO. K GO TO 6S

A( I,.i)=A( I K )*A(K.,Jl+A( I,J)

bScONTiNIJF
nn 79 J=1 9N

FF (J.FQ.K) rO TO 75
AKK,J)=KP,J)/9IC'A

75 rnNTINIIF

pO A(K,K)=l.0/RIGA

100 K=K-1
IF (K.LF.0) GO TO 150

IF (I.LF.K) rO Tn 120



FF
00n 110 J=1.N
HnLn=A(J,K)

10A(JtK)=-A(J,I)

120 J=M(K)
IF (J.LF.K) rn Tn 100
nn 130 1=1,N
HflLl=A( K, I
A(K,I )=-A(J.I)

130 A(J,I)=HflLn
Gm Tn 100

150 o0 200 I=1.N
Y( I)=CMPLXO0.0,0.o)
n0 200 J=1,N

200 V( I)=A( I,j))*X(J )+Y( 1)
RFTlJRN
FND
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S(IBRnfi)TINF ADAM(C,X,Y)
r)iMFNSinN 0(7)

Y X*Q,( 7)

RFTIIRN
F Nn
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